

IIT JAM (2022)

Section - A

1. The reagent required for the following transformation

CO₂H
$$\rightarrow$$
 CO₂H \rightarrow CO₂H \rightarrow

2. The major product formed in the following reaction

$$(a) \xrightarrow{\text{Me}} (1) \text{BD}_3 \cdot \text{THF}$$

$$(2) \text{H}_2\text{O}_2/\text{NaOH}$$
is
$$(a) \xrightarrow{\bar{H}} D$$

$$(b) \xrightarrow{\bar{H}} OH$$

$$(c) \xrightarrow{\bar{H}} D$$

$$(d) \xrightarrow{\bar{D}} D$$

$$(d) \xrightarrow{\bar{D}} D$$

$$(d) \xrightarrow{\bar{D}} D$$

3. The major product formed in the following reaction

4. The major product formed in the following reaction

$$K+O_2 \rightarrow is$$

- (a) K,O
- (b) K_2O_2
- (c) KO₂
- (d) K,O,

5. Which one of the following options is best suited for effecting the transformation?

(a) MnO,

(b) DMSO, (COCl)₂, Et₃N

(c) Al(Oi-Pr)₃

(d) Ag₂O/NH₄OH

- The structure of [XeF_o]²⁻ is 6.
 - (a) cubic

(b) hexagonal bipyramid

(c) square antiprism

- (d) octagonal
- Among the following, the compound that forms the strongest hydrogen bond is 7.
- (b) HCl
- (c) HBr
- (d) HI
- Among the following, the biomolecule with a direct metal-carbon bond is 8.
 - (a) coenzyme B₁₂
- (b) nitrogenase
- (c) chlorophyll
- (d) hemoglobin

9. For the reaction

$$H_{2}PO_{2}^{-}(aq) + OH^{-}(aq) \rightarrow HPO_{3}^{2-}(aq) + H_{2}(g)$$

the rate expression is $k[H_2PO_2^-][OH^-]^2$. If the concentration of $H_2PO_2^-$ is doubled, the rate is

- (a) tripled
- (b) halved
- (c) doubled
- (d) unchanged
- 10. The nature of interaction involved at the gas-solid interface in physisorption is
- (b) van der Waals
- (c) hydrogen bonding (d) covalent

The major product formed in the following reaction 11.

$$\begin{array}{c|c} Ph \\ Me & H \\ HO & OTs \\ Me \end{array}$$

$$H \xrightarrow{H} P$$
(c) NC \xrightarrow{H}

12. An organic compound having molecular formula C₀H₁₀O₂ exhibits the following spectral characteristics:

 ${}^{1}H$ NMR: δ 9.72 (t, 1H), 7.1 (d, 2H), 6.7 (d, 2H), 3.8 (s, 3H), 3.6 (d, 2H)

 $IR: \sim 1720 \text{ cm}^{-1}$

The most probable structure of the compound is

- 13. The major product formed in the reaction of (2S,3R)-2-chloro-3-phenylbutane with NaOEt in EtOH is
 - (a) (E)-2-phenyl-but-2-ene

(b) (Z)-2-phenyl-but-2-ene

(c) 3-phenyl-but-1-ene

(d) (2R,3R)-2-ethoxy-3-phenylbutane

14. The major product formed in the following reaction

The reactivity of the enol derivatives 15.

Ш

towards benzaldehyde follows the order

- (a) I > II > III (b) III > II > I
- (c) I > I > III

- 16. All possible lattice types are observed in the
 - (a) cubic crystal system

(b) monoclinic crystal system

(c) tetragonal crystal system

- (d) orthorhombic crystal system
- The structure types of $B_{{\bf 10}}H_{{\bf 10}}^{\ 2-}$ and $B_{{\bf 10}}H_{{\bf 14}}$, respectively, are 17.
 - (a) closo and nido

(b) nido and arachno

(c) nido and closo

- (d) closo and arachno
- The ground state and the maximum number of spin-allowed electronic transitions possible in a Co²⁺ 18. tetrahedral complex, respectively, are
 - (a) ${}^{4}A_{2}$ and 3
- (b) ${}^{4}T_{1}$ and 2
- (c) ${}^{4}A$, and 2 (d) ${}^{4}T_{1}$ and 3
- 19. The correct statement about the geometries of BH₂ and NH₂ based on valence shell electron pair repulsion (VSEPR) theory is
 - (a) both BH, ⁺ and NH, ⁺ are trigonal planar
- (b) BH₂⁺ is linear and NH₂⁺ is trigonal planar
- (c) BH₂⁺ is trigonal planar and NH₂⁺ is linear (d) both BH₂⁺ and NH₂⁺ are linear
- The order of increasing CO stretching frequencies in [Co(CO)₄]⁻, [Cu(CO)₄]⁺, [Fe(CO)₄]²⁻ and 20. $[Ni(CO)_4]$ is
 - (a) $[Cu(CO)_{A}]^{+} < [Ni(CO)_{A}] < [Co(CO)_{A}]^{-} < [Fe(CO)_{A}]^{2-}$
 - (b) $[Fe(CO)_{\lambda}]^{2-} < [Co(CO)_{\lambda}]^{-} < [Ni(CO)_{\lambda}] < [Cu(CO)_{\lambda}]^{+}$
 - (c) $[Co(CO)_{4}]^{-} < [Fe(CO)_{4}]^{2-} < [Cu(CO)_{4}]^{+} < [Ni(CO)_{4}]$
 - (d) $[Ni(CO)_{4}] < [Cu(CO)_{4}]^{+} < [Co(CO)_{4}]^{-} < [Fe(CO)_{4}]^{2-}$

21. The reaction of 2,4-dinitrofluorobenzene with hydrazine produces a yellow orange solid X used for the identification of an organic functional group G. X and G, respectively, are

- 22. The stability of adducts H₃B·PF₃, H₃B·NMe₃, H₃B·CO, H₃B·OMe₃ follows the order
 - (a) $H_3B \cdot OMe_2 < H_3B \cdot CO < H_3B \cdot PF_3 < H_3B \cdot NMe_3$
 - (b) $H_3B \cdot PF_3 < H_3B \cdot CO < H_3B \cdot NMe_3 < H_3B \cdot OMe_2$
 - (c) $H_3B \cdot CO \le H_3B \cdot PF_3 \le H_3B \cdot NMe_3 \cdot H_3B \cdot OMe_5$
 - (d) $H_3B \cdot PF_3 < H_3B \cdot CO < H_3B \cdot OMe_2$. $H_3B \cdot NMe_3$
- 23. The spacing between successive rotational energy levels of a diatomic molecule XY and its heavier isotopic analogue X'Y' varies with the rotational quantum number, J, as

- 24. The ratio of the $2p \rightarrow 1s$ transition energy in He⁺ to that in the H atom is closest to
 - (a) 1
- (b) 2
- (c) 4
- (d) 8

25. The phase diagram of water is best represented by

26. Capillary W contains water and capillary M contains mercury. The contact angles between the capillary wall and the edge of the meniscus at the air-liquid interface in W and M are W $\theta_{_W}$ and M $\theta_{_M}$, respectively.

The contact angles satisfy the conditions

(a) $\theta_{\rm W} > 90^{\rm o}$ and $\theta_{\rm M} > 90^{\rm o}$

(b) $\theta_{\rm w} > 90^{\rm o}$ and $\theta_{\rm m} < 90^{\rm o}$

(c) $\theta_{\rm W}$ < 90° and $\theta_{\rm M}$ > 90°

- (d) $\theta_{\rm W} < 90^{\rm o}$ and $\theta_{\rm M} < 90^{\rm o}$
- 27. The Maxwell-Boltzmann distribution $f(v_y)$ of one-dimensional velocities v_y at temperature T is

[Given: A is a normalization constant such that $\int_{a}^{b} f(v_x) dv_x = 1$ and k_B is the Boltzmann constant]

(a) A $\exp\left(-mv_x^2/2k_BT\right)$

- (c) $Av_x^2 \exp(-mv_x^2/2k_BT)$
- (b) $A \exp(-mv_x^2/k_BT)$ (d) $Av_x^2 \exp(-mv_x^2/k_BT)$
- The potential for a particle in a one-dimensional box is given as: 28.
 - V(x) = 0 for $0 \le x \le L$, and $V(x) = \infty$ elsewhere.

The locations of the internal nodes of the eigenfunctions $\psi_n(x)$, $n \ge 2$, are

[Given: m is an integer such that 0 < m < n]

- (a) $x = \frac{m + \frac{1}{2}}{L}$ (b) $x = \frac{m}{n}L$ (c) $x = \frac{m}{n+1}L$ (d) $x = \frac{m+1}{n+1}L$

- 29. The number of CO stretching bands in the infrared spectrum of Fe(CO)_s is
 - (a) 1
- (b) 2
- (c) 3
- (d)4
- 30. The standard Gibbs free energy change for the reaction

$$H_2O(g) \to H_2(g) + \frac{1}{2}O_2(g)$$

at 2500 K is +118 kJ mol⁻¹.

The equilibrium constant for the reaction is

[Given: $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$]

- (a) 0.994
- (b) 1.006
- (c) 3.42×10^{-3}
- (d) 292.12

Section - B

1. Among the following, the reaction(s) that favor(s) the formation of the products at 25 °C is/are

(b) Me O
$$+$$
 NH_2 Me N H $+$ OH

(c)
$$Me \stackrel{O}{\underset{H}{\bigvee}} + HCl \stackrel{O}{\longleftarrow} Me \stackrel{O}{\underset{Cl}{\bigvee}} + \stackrel{NH_2}{\longleftarrow}$$

(d) Me
$$\stackrel{O}{\underset{H}{\bigvee}}_{Ph}$$
 + H₂O $\stackrel{O}{\longleftarrow}$ Ph $\stackrel{O}{\underset{OH}{\bigvee}}_{OH}$ + H₂N $\stackrel{\frown}{\underset{Ph}{\bigvee}}_{Ph}$

- 2. Among the following, the correct statement(s) is/are:
 - (a) The first pK_a of malonic acid is lower than the pK_a of acetic acid while its second pK_a is higher than the pK_a of acetic acid.
 - (b) The first pK_a of malonic acid is higher than the pK_a of acetic acid while its second pK_a is lower than the pK_a of acetic acid.
 - (c) Both the first and the second pK_as of malonic acid are lower than the pK_a of acetic acid.
 - (d) Both the first and the second pK_as of malonic acid are higher than the pK_a of acetic acid.
- 3. The compound(s) that participate(s) in Diels-Alder reaction with maleic anhydride is/are

$$(d) \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

- 4. Among the following, the suitable route(s) for the conversion of benzaldehyde to acetophenone is/are (a) CH,COCl, anhydrous AlCl,
 - (b) (i) HS(CH₂)₃SH, F₃B·OEt₂; (ii) n-BuLi; (iii) MeI; (iv) HgCl₂, CdCO₃, H₂O
 - (c) NaNH₂, MeI
 - (d) (i) MeMgBr; (ii) aq. acid; (iii) pyridinium chlorochromate (PCC)

5. The reaction

involve(s)

- (a) migratory insertion
- (b) change in electron count of Rh from 18 to 16
- (c) oxidative addition
- (d) change in electron count of Rh from 16 to 18
- 6. The reason(s) for the lower stability of Si_2H_6 compared to C_2H_6 is/are
 - (a) silicon is more electronegative than hydrogen
 - (b) Si Si bond is weaker than C C bond
 - (c) Si H bond is weaker than C H bond
 - (d) the presence of low-lying d-orbitals in silicon
- 7. For an N-atom nonlinear polyatomic gas, the constant volume molar heat capacity $C_{v,m}$ has the expected value of 3(N-1) R, based on the principle of equipartition of energy. The correct statement(s) about the measured value of $C_{v,m}$ is/are
 - (a) The measured $C_{v,m}$ is independent of temperature.
 - (b) The measured C_{ym} is dependent on temperature.
 - (c) The measured $\boldsymbol{C}_{\boldsymbol{v},\boldsymbol{m}}$ is typically lower than the expected value.
 - (d) The measured C_{vm} is typically higher than the expected value.
- 8. Zinc containing enzyme(s) is/are
 - (a) carboxypeptidase

(b) hydrogenase

- (c) carbonic anhydrase
- (d) urease
- 9. The conversion of ICl to ICl⁺ involve(s)
 - (a) the removal of an electron from a π^* molecular orbital of ICl
 - (b) an increase in the bond order from 1 in ICl to 1.5 in ICl
 - (c) the formation of a paramagnetic species
 - (d) the removal of an electron from a molecular orbital localized predominantly on Cl
- 10. The common point defect(s) in a solid is/are
 - (a) Wadsley defect

(b) Schottky defect

(c) Suzuki defect

(d) Frenkel defect

Section - C

1. Among the following

the number of aromatic compounds is . .

2. The number of stereoisomers possible for the major product formed in the reaction

3. The number of signals observed in the ¹H NMR spectrum of the compound

is .

4. The reaction of 122 g of benzaldehyde with 108 g of phenylhydrazine gave 157 g of the product

$$\bigcap_{H} N_{-N}$$

The yield of the product is ________%. (round off to the nearest integer)

- 5. The B B bond order in B_2 is
- 6. The number of unpaired electrons in $[Co(H_2O)_6]^{2+}$ is _____.
- 7. The number of significant figures in 5.0820×10^2 is .
- 8. The d spacing for the first-order X-ray ($\lambda = 1.54 \text{ Å}$) diffraction event of metallic iron (fcc) at $2\theta = 20.2^{\circ}$ is ______ Å. (round off to three decimal places)

9.	The volume fraction for an element in an fcc lattice is (round off to two decimal places)
10.	A steady current of 1.25 A is passed through an electrochemical cell for 1.5 h using a 12 V battery. The total charge, Q, drawn during this process is Coulombs. (round off to the nearest integer).
11.	The specific rotation of optically pure (R)-1-phenylethylamine is $+40$ (neat, 20 °C). A synthetic sample of the same compound is shown to contain 4:1 mixture of (S)- and (R)-enantiomers. The specific rotation of the neat sample at 20 °C is (round off to the nearest integer)
12.	The number of β particles emitted in the nuclear reaction $^{238}_{92}$ U \rightarrow^{206}_{82} Pb is
13.	Iron is extracted from its ore via the reaction
	$\text{Fe}_2\text{O}_3 + 3 \text{ CO} \rightarrow 2 \text{ Fe} + 3 \text{ CO}_2$
	The volume of CO (at STP) required to produce 1 kg of iron is liters.
	(round off to the nearest integer)
	[Given: Atomic wt. of Fe = 56; assume STP to be 0 °C and 1 atm]
14.	Total degeneracy (number of microstates) for a Ti ³⁺ ion in spherical symmetry is
15.	A galvanic electrochemical cell made of Zn^{2+}/Zn and Cu^{2+}/Cu half-cells produces 1.10 V at 25 °C. The ratio of $[Zn^{2+}]$ to $[Cu^{2+}]$ is maintained at 1.0. The ΔG^o for the reaction when 1.0 mol of Zn gets dissolved is kJ. (round off to the nearest integer)
	[Given: Faraday's constant = 96485 C mol ⁻¹]
16.	At constant volume, 1.0 kJ of heat is transferred to 2 moles of an ideal gas at 1 atm and 298 K. The final temperature of the ideal gas is K. (round off to one decimal place) [Given: R = 8.314 J K ⁻¹ mol ⁻¹]
17.	Two close lying bands in a UV spectrum occur at 274 nm and 269 nm. The magnitude of the energy gap between the two bands is cm ⁻¹ . (round off to the nearest integer)
18.	The pH of an aqueous buffer prepared using CH ₃ COOH and CH ₃ COO-Na ⁺ is 4.80.
	This quantity $\frac{\left[\text{CH}_3\text{COO}^-\right] - \left[\text{CH}_3\text{COOH}\right]}{\left[\text{CH}_3\text{COOH}\right]} \text{ is}_{\underline{\hspace{1cm}}}.$
	(round off to three decimal places)
	[Given: pK _a of CH ₃ COOH in water is 4.75]
19.	At constant temperature, 6.40 g of a substance dissolved in 78 g of benzene decreases the vapor pressure of benzene from 0.125 atm to 0.119 atm.
	The molar mass of the substance is $g \text{ mol}^{-1}$.
	(round off to one decimal place)
	[Given: Mol. wt. of benzene = 78 g mol^{-1}]
20.	For a van der Waals gas, the critical temperature is 150K and the critical pressure is $5 \times 10^6 \text{Pa}$. The volume occupied by each gas molecule is Å.
	(round off to two decimal places)
	[Given: $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}, N_A = 6.023 \times 10^{23}$]