

IIT JAM (2021)

Section - A

- 1. Spin-only magnetic moments (in BM) of $[NiCl_2(PPh_3)_2]$ and $[Mn(NCS)_6]^4$, respectively, are (a) 2.83 and 5.92 (b) 0.00 and 5.92 (c) 2.83 and 1.89 (d) 0.00 and 1.89
- 2. The major product formed in the following reaction is

- 3. For Na⁺, Mg²⁺, Al³⁺ and F⁻, the CORRECT order of ionic radii is
 - (a) $Al^{3+} > Mg^{2+} > Na^+ > F^-$

(b) $Al^{3+} > Na^+ > Mg^{2+} > F^-$

(c) $Na^+ > F^- > Mg^{2+} > Al^{3+}$

- (d) $F^- > Na^+ > Mg^{2+} > Al^{3+}$
- 4. The CORRECT order of pK_a for the compounds I to IV in water at 298 K is
 - $\frac{\mathsf{HCo}\big(\mathsf{CO}\big)_4}{\mathbf{I}} \quad \frac{\mathsf{HCo}\big(\mathsf{CO}\big)_3 \big(\mathsf{PPh}_3\big)}{\mathbf{II}} \quad \frac{\mathsf{HCo}\big(\mathsf{CO}\big)_3 \big(\mathsf{P}\big(\mathsf{OPh}\big)_3\big)}{\mathbf{II}} \quad \frac{\mathsf{HCo}\big(\mathsf{CO}\big)_2 \big(\mathsf{PPh}_3\big)_2}{\mathbf{IV}}$
 - (a) I > III > II > IV
- (b) IV > II > III > I
- (c) IV > III > II > I
- (d) I > II > III > IV

5. Among the following, the matrices with non-zero determinant are

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad Q = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix} \qquad R = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 2 & 0 & 0 \\ 3 & 1 & 3 & 0 \\ 4 & 3 & 1 & 4 \end{bmatrix} \qquad S \begin{bmatrix} 1 & 2 & 3 & 1 \\ 2 & 3 & 4 & 2 \\ 3 & 4 & 1 & 3 \\ 4 & 1 & 2 & 4 \end{bmatrix}$$
(a) P, Q and R (b) P, Q and S (c) P, R and S (d) Q, R and S

6. The major product formed in the following reaction is

7. A pure substance M has lesser density in solid state than in liquid state. The ΔS_{fusion} of M is +25 J K⁻¹ mol⁻¹. The CORRECT representative Pressure-Temperature diagram for the fusion of M is

8. Two sets of quantum numbers with the same number of radial nodes are

(a)
$$n = 3$$
; $l = 2$; $m_l = 0$ and $n = 2$; $l = 1$; $m_l = 0$

(b)
$$n = 3$$
; $l = 0$; $m_1 = 0$ and $n = 2$; $l = 0$; $m_2 = 0$

(c)
$$n = 3$$
; $l = 1$; $m_i = 1$ and $n = 2$; $l = 1$; $m_i = 0$

(d)
$$n = 3$$
; $l = 1$; $m_i = -1$ and $n = 2$; $l = 1$; $m_i = 0$

9. The major product formed in the following reaction is

$$(a) \qquad \begin{array}{c} O \\ \hline \\ 160^{\circ}C \\ \end{array}$$

$$(b) \qquad \begin{array}{c} O \\ \hline \\ CN \\ \end{array}$$

$$(c) \qquad \begin{array}{c} CN \\ \hline \\ CN \\ \end{array}$$

$$(d) \qquad \begin{array}{c} O \\ \hline \\ CN \\ \end{array}$$

10. A compound shows 1H NMR peaks at δ -values (in ppm) 7.31 (2H), 7.21 (2H), 4.5 (2H) and 2.3 (3H). The structure of the compound is

11. For the consecutive reaction,

$$X \xrightarrow{k_X} Y \xrightarrow{k_Y} Z$$

 C_o is the initial concentration of X. The concentrations of X, Y and Z at time t are C_X , C_Y and C_Z , respectively. The expression for the concentration of Y at time t is

$$\text{(a) } \frac{k_{X}C_{X}}{k_{Y}-k_{X}}\Big(e^{-k_{X}t}-e^{-k_{Y}t}\Big)$$

(b)
$$\frac{k_{x}C_{x}}{k_{y}-k_{y}}\left(e^{-k_{y}t}-e^{-k_{x}t}\right)$$

(c)
$$\frac{k_{x}C_{0}}{k_{y}-k_{x}} \left(e^{-k_{y}t}-e^{-k_{x}t}\right)$$

(d)
$$\frac{k_x C_0}{k_y - k_y} \left(e^{-k_x t} - e^{-k_y t} \right)$$

12. Half-life $(t_{1/2})$ of a chemical reaction varies with the initial concentration of reactant (A_0) as given below:

$A_0 \left(\text{mol } L^{-1} \right)$	5×10 ⁻²	4×10^{-2}	3×10^{-2}
$t_{1/2}(s)$	360	450	600

The order of the reaction is

(b)
$$3$$

13. For $\alpha > 0$, the value of the integral $\int_{-\infty}^{+\infty} x e^{-\alpha x^2} dx$ is

(c)
$$\sqrt{\frac{\pi}{\alpha}}$$

14. The major products E and F formed in the following reactions are

$$\begin{array}{c|c}
 & Br_2 \\
\hline
 & EtOH, 0^{\circ}C
\end{array}$$

$$\begin{array}{c|c}
\hline
 & Br_2 \\
\hline
 & EtOH, 0^{\circ}C
\end{array}$$

- 15. Reaction of BCl, with NH₄Cl at 140°C produces compound P. further, P reacts with NaBH₄ to give a colorless liquid Q. The reaction of Q with H₂O at 100°C produces compound R and a diatomic gas S. Among the following, the CORRECT statement is
 - (a) S is Cl,
- (b) P is B₂N₂H₆
- (c) R is [B(OH)NH]₂ (d) Q is [BClNH]₃
- According to the crystal field theory, d-d transition observed in [Ti(H₂O)₆]³⁺ is 16.
 - (a) Laporte forbidden and spin allowed
- (b) Laporte allowed and spin forbidden
- (c) Laporte forbidden and spin forbidden
- (d) Laporte allowed and spin allowed
- 17. The CORRECT combination for metalloenzymes given in Column I with their catalytic reactions in Column II is

Column-I

(i) Cytochrome P-450

Column-II

 $2H_2O_2 \rightarrow 2H_2O + O_2$

(ii) Catalase

(L) $R-CH_2OH + O_2 \rightarrow R-CHO + H_2O_2$

(R = alkyl or aryl)

(iii) Galactose oxidase

(M) $O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$

(iv) Cytochrome c oxidase

- $(N) R-H + O_2 + 2e^- + 2H^+ \rightarrow R-OH + H_2O$ (R = alkyl or aryl)
- (a) (i)–(M); (ii)–(K); (iii)–(L); (iv)–(N)
- (b) (i)–(N); (ii)–(K); (iii)–(L); (iv)–(M)
- (c) (i)–(M); (ii)–(N); (iii)–(K); (iv)–(L)
- (d)(i)-(N);(ii)-(L);(iii)-(K);(iv)-(M)
- The CORRECT statement regarding the molecules BF_3 and CH_4 is 18.
 - (a) CH₄ is microwave active and infrared inactive
 - (b) Both BF₃ and CH₄ are infrared active
 - (c) BF₃ is microwave active and infrared active
 - (d) Both BF₃ and CH₄ are microwave active
- 19. Monochromatic X-rays having energy 2.8×10^{-15} J diffracted (first order) from (200) plane of a cubic crystal at an angle 8.5°. The length of unit cell in Å of the crystal (rounded off to one decimal place) is

(Given: Planck's constant, $h = 6.626 \times 10^{-34} \,\text{J s}$; $c = 3.0 \times 10^8 \,\text{m s}^{-1}$)

- (a) 9.8
- (b) 4.8
- (c) 2.4
- (d) 3.4
- Hybridization of the central atoms in I₃-, ClF₃ and SF₄, respectively, are 20.
 - (a) sp³d, sp² and dsp² (b) sp, sp² and sp³d (c) sp, sp³d and dsp² (d) sp³d, sp³d and sp³d

- 21. Reaction of [Ni(CN)₄]²⁻ with metallic potassium in liquid ammonia at -33°C yields complex E. The geometry and magnetic behavior of E, respectively, are
 - (a) Octahedral and paramagnetic
- (b) Tetrahedral and diamagnetic
- (c) Square pyramidal and paramagnetic
- (d) Square planar and diamagnetic
- 22. The reaction that produces the following as a major product is

- 23. The complex that does NOT obey the 18-electron rule is
 - (Given: Atomic numbers of Ti, Mn, Ta and Ir are 22, 25, 73 and 77, respectively)
 - (a) $[(\eta^5-C_5H_5)Ti(CO)_4]^-$

(b) [TaCl₃(PEt₃)₂(CHCMe₃)]

(c) $[Mn(SnPh_3)_2(CO)_4]^-$

- (d) $[(\eta^5-C_5H_5)Ir(CH_2)(PMe_3)]$
- 24. The products P, Q, R and S formed in the following reactions are

OH
$$\frac{1. \text{ HBr}}{2. \text{ CuCN}} \quad P + Q$$
3. Conc. HCl major minor

(a)
$$P = R =$$
 COOH and $Q = S =$ CN

(b) $P = R =$ COOH and $Q = S =$

(c)
$$P = S =$$
 OH and $Q = R =$ COOH

(d)
$$P = S = O$$
 and $Q = R = O$

25. The decreasing order of C=C bound length in the following complexes is

(a)
$$II > III > IV > I$$

(b)
$$IV > II > III > I$$

(c)
$$II > IV > III > I$$

(d)
$$IV > II > I > III$$

26. The major product formed in the following reaction is

27. The major product formed in the following reaction sequence is

OH OH
$$H_3C \xrightarrow{CH_3} CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$(d) \bigvee_{N} OH$$

- 28. The volume correction factor for a non-ideal gas in terms of critical pressure (p_c), critical molar volume (V_c), critical temperature (T_c) and gas constant (R) is
 - (a) $\frac{8p_cV_c}{3T_c}$
- (b) $\frac{RT_c}{8p_c}$
- (c) $3p_cV_c^2$
- (d) $\frac{27R^2T_c^2}{64p_c}$

29. In the following reaction, compound Q is

Q NaOEt
$$EtOH$$
 $CH(CH_3)_2$ (only product)

$$(a) \begin{picture}(20,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0)$$

30. The major product formed in the following reaction is

Section - B

- 1. The functional group (s) in reducing sugar that tests positive with Tollen's reagent is (are)
 - (a) Aldehyde
- (b) Ketone
- (c) Acetal
- (d) Hemi acetal
- 2. Hantzsch pyridine synthesis involves several steps. Some of those are
 - (a) Mannich reaction

(b) Michael addition

(c) Darzens reaction

- (d) Aldol reaction
- 3. The product P and Q formed in the reaction are

Me + :CFCl
$$\rightarrow$$
 P + Q + minor product(s)

Me (singlet state)

- 4. The CORRECT statement(s) about the species is (are)
 - (a) CpMo(CO)₃ and CpW(CO)₃ are isoelectronic (wher Cp is cyclopentadienyl)
 - (b) BH and CH are isolobal and isoelectronic
 - (c) CH₃ and Mn(CO)₅ are isolobal
 - (d) $\mathrm{CH_2^-}$ and $\mathrm{NH_2}$ are isolobal and isoelectronic
- 5. The CORRECT Maxwell relation(s) derived from the fundamental equations of thermodynamics is(are)

(a)
$$\left(\frac{\partial T}{\partial V}\right)_T = \left(\frac{\partial P}{\partial T}\right)_V$$
 (b) $\left(\frac{\partial T}{\partial P}\right)_S = \left(\frac{\partial V}{\partial S}\right)_P$ (c) $\left(\frac{\partial S}{\partial P}\right)_T = -\left(\frac{\partial V}{\partial T}\right)_P$ (d) $\left(\frac{\partial T}{\partial V}\right)_S = \left(\frac{\partial P}{\partial S}\right)_V$

6. Among the following, the anti – aromatic compound(s) is (are)

(d) (J)

- 7. The CORRECT statement(s) about sodium nitroprusside is(are)
 - (a) It contains nitrosyl ligand as NO⁺
 - (b) It is a paramagnetic complex
 - (c) It is used for the detection of S²⁻ in aqueous solution
 - (d) Nitroprusside ion is formed in the brown ring test for nitrates
- 8. The complex (es) that show (s) Jahn Teller distortion is(are)
 - (a) $[Co(CN)_5(H_2O)]^{3-}$ (b) $[NiF_6]^{2-}$
- (c) $[Co(en)_{2}F_{2}]^{+}$
- (d) $[Mn(CNMe)_6]^{2+}$
- 9. The pigment responsible for red color in tomato has one functional group. The CORRECT statement(s) about this functinal group is(are)
 - (a) It gives positive silver mirror test
 - (b) It gets cleaved on reaction with ozone
 - (c) It gives hydrazone derviative on reaction with 2, 4—dinitrophenylhydrazine
 - (d) It decolorizes bromine water
- 10. The compound(s), which gives) benzoic acid on oxidation with KMnO₄, is (are)

Section - C

- 1. The total number of microstates possible for a d⁸ electronic configuration is .
- 2. Among the following, the total number of terpenes (terpenoids) is

Branches: Jaipur | Pune | Kolkata | Cuttack | Bhubaneswar

3.4.	The total number of optically active isomers of dichloridobis (glycinato)cobaltate(III) ion is For the following fusion reaction,			
	$4^{1}H \rightarrow {}^{4}He + 2\beta^{+} + 2\upsilon + \gamma$			
	the Q-value (energy of the reaction) in MeV (rounded off to one decimal place) is .			
	(Given: Mass of ¹ H nucleus is 1.007825 u and mass of ⁴ He nucleus is 4.002604 u)			
5.	he dissociation constant of a weak monoprotic acid is 1.6×10^{-5} and its molar conductance at infinite lution is 360.5×10^{-4} mho m ² mol ⁻¹ . For 0.01 M solution of this acid, the specific conductance is n × 0^{-2} mho m ⁻¹ . The value of n (rounded off to two decimal places) is			
6.	Calcium crystallizes in fcc lattice of unit cell length 5.56 Å and density 1.4848 g cm ⁻³ . The percentage of Schottky defects (rounded off to one decimal place) in the crystal is			
	(Given: Atomic mass of Ca is 40 g mol ⁻¹ ; $N_A = 6.022 \times 10^{23}$ mol ⁻¹)			
7.	If the root mean square speed of hydrogen gas at a particular temperature is 1900 m s ⁻¹ , then the root mean square speed of nitrogen gas at the same temperature, in m s ⁻¹ (rounded off to the nearest integer), is			
	(Given: atomic mass of H is 1 g mol⁻¹; atomic mass of N is 14 g mol⁻¹)			
8.	Adsorption of a toxic gas on 1.0 g activated charcoal is 0.75 cm ³ both at 2.5 atm, 140 K and at 30.0 atm, 280 K. The isosteric enthalpy for adsorption of the gas in kJ mol ⁻¹ (rounded off to two decimal places) is			
	(Given: $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$)			
9.	A buffer solution is prepared by mixing 0.3 M NH ₃ and 0.1 M NH ₄ NO ₃ . If K_b of NH ₃ is 1.6×10^{-5} at 25°C, then the pH (rounded off to one decimal place) of the buffer solution at 25°C is			
10.	MgO crystallizes as rock salt structure with unit cell length 2.12 Å. From electrostatic model, the calculated lattice energy in kJ mol ⁻¹ (rounded off to the nearest integer) is			
	(Given: $N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$; Madelung constant = 1.748; $\epsilon_0 = 8.854 \times 10^{-12} \text{ J}^{-1} \text{ C}^2 \text{ m}^{-1}$; charge			
	of an electron = $1.602 \times 10^{-19} \mathrm{C}$			
11.	The separation of energy levels in the rotational spectrum of CO is 3.8626 cm ⁻¹ . The bond length (assume it does not change during rotation) of CO in Å (rounded off to two decimal places) is			
	(Given: Planck's constant $h = 6.626 \times 10^{-34} J s$; $N_A = 6.022 \times 10^{23} mol^{-1}$; atomic mass of C is 12 g mol ⁻¹ ; atomic mass of O is 16 g mol ⁻¹ ; $c = 3 \times 10^8 m s^{-1}$)			
12.	A dilute solution prepared by dissolving a nonvolatile solute in one liter water shows a depression in freezing point of 0.186 K. This solute neither dissociates nor associates in water. The boiling point of the solution in K (rounded off to three decimal places) is)			
	(Given: For pure waterr, boiling point = 373.15 K; cryoscopic constant = 1.86 K (mol kg ⁻¹) ⁻¹ ; ebullioscopic constant = 0.51 K (mol kg ⁻¹) ⁻¹)			
13.	A salt mixture (1.0 g) contains 25 wt% of MgSO ₄ and 75 wt% of M ₂ SO ₄ . Aqueous solution of this salt mixture on treating with excess BaCl ₂ solution results in th precipitation of 1.49 g of BaSO ₄ . The atomic mass of M in g mol ⁻¹ (rounded off to two decimal places) is			
	(Given: the atomic masses of Mg, S, O, Ba and Cl are 24.31, 32.06, 16.00, 137.33 and 35.45 g mol ⁻¹ , respectively)			

14. For the molecule,

the number of all possible stereoisomers is .

15. For the reaction,

$$Q + R \xrightarrow{k_1} X \xrightarrow{k_2} P$$

 $k_1 = 2.5 \times 10^5 \, L \, mol^{-1} \, s^{-1}, \, k_{-1} = 1.0 \times 10^4 \, s^{-1}$ and $k_2 = 10 \, s^{-1}$. Under steady state approximation, the rate constant for the overall reaction in L mol⁻¹ s^{-1} (rounded off to the nearest integer) is

16. The thermodynamic data at 298 K for th decomposition reaction of limestone at equilibrium is given below

$$CaCO_3 \rightleftharpoons CaO(s) + CO_2(g)$$

Thermodynamic quantity	CaCO ₃ (s)	CaO(s)	CO ₂ (g)
μ ^o (kJ mol ⁻¹)	-1128.8	-604.0	-394.4
ΔH _f ° (kJ mol ⁻¹)	-1206.9	-635.1	-393.5

The partial pressure of $CO_2(g)$ in atm evolved on heating limestone (rounded off to two decimal places) at 1200 K is

(Given:
$$R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$$
)

17. The mean ionic activity coefficient of 0.004 molal CaCl₂ in water at 298 K (rounded off to thre decimal places) is ______.

(Given: Debye-Huckel constant for an aqueous solution at 298 K is $0.509\,kg^{1/2}\,mol^{-1/2}$)

- 18. The intensity of a monochromatic visible light is reduced by 90% due to absorption on passing through a $5.0 \, \text{mM}$ solution of a compound. If the path length is 4 cm, then the molar extinction coefficient of the compound in M^{-1} cm⁻¹ is
- 19. The surface tension (γ) of a solution, prepared by mixing 0.02 mol of an organic acid in 1 L of pure water, is represented as

$$\gamma^* - \gamma = A \log(1 + Bc)$$

 γ^* is the surface tension of pure water, $A=0.03~N~m^{-1}, B=50~mol^{-1}~L$ and c is concentration in mol L^{-1} . The excess concentration of the organic acid at the surface of the liquid, determined by Gibbs adsorption equation at 300~K is $n\times 10^{-6}~mol~m^{-2}$. The value of n (rounded off to two decimal places) is ______.

(Given:
$$R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$$
)

20. If the crystal field splitting energy of $[Co(NH_3)_4]^{2+}$ is 5900 cm⁻¹, then the magnitude of its crystal field stabilization energy, in kJ mol⁻¹ (rounded off to one decimal place), is