CHEM ACADEMY

GATE (2021)

1. Among the following eight compounds,

The number of compound(s) which can exhibit stereoisomerism is
2. The characters of $\mathrm{E}, \mathrm{C}_{2}, \sigma_{v}$ and σ_{v}^{\prime} symmetry operations, in this order, for valid irreducible representation(s) of the $\mathrm{C}_{2 \mathrm{v}}$ point group is /are:
(a) $1,1,1,1$
(b) $1,-1,1,-1$
(c) $1,-1,-1,-1$
(d) $-1,1,1,-1$
3. The de Broglie wavelength of an argon atom (mass $=40 \mathrm{amu}$) traveling at a speed of $250 \mathrm{~m} \mathrm{~s}^{-1}$ (rounded offto one decmial place) is \qquad picometers.
$\left[\mathrm{N}=6.022 \times 10^{23} ; \mathrm{h}=6.626 \times 10^{-34} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}\right]$
4. The majro product formed in the following reaction

is:
(a)

(b)

(c)

(d)

5. The quantity of the cobalt ore $\left[\mathrm{Co}_{3}\left(\mathrm{AsO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right]$ required to obtain 1 kg of cobalt (rounded off to two decimal places) is \qquad kg .
[Atomic Wt. of $\mathrm{Co}=59, \mathrm{As}=75, \mathrm{O}=16, \mathrm{H}=1$]
6. The major product formed in the following reaction

(a)

(b)

(c)

(d)

7. The major product formed in the following reaction

(a)

(b)

(c)

(d)

8. The geometry and the number of unpaired electrons in tetrakis (1 - norbornyl)Co

respectively, are:
(a) tetrahedral and five
(b) square planar and three
(c) tetrahedral and one
(d) square planar and one
9. Acceptable wavefunction for a quantum particle must be;
(a) even
(b) single - valued
(c) odd
(d) continuous
10. The vapour pressure of toluene $(\mathrm{Mol} . \mathrm{Wt}=92$.$) is 0.13 \mathrm{~atm}$ at $25^{\circ} \mathrm{C}$. If 6 g of a hydrocarbon is dissolved in 92 g of toluene, the vapor pressure drops to 0.12 atm . The molar mass of the hydrocarbon (rounded off to the nearest integer) is \qquad .
11. The correct order of Lewis acid strengths of $\mathrm{BF}_{2} \mathrm{Cl}, \mathrm{BFClFBr}, \mathrm{BF}_{2} \mathrm{Br}$ and BFBr_{2} is:
(a) $\mathrm{BFBr}_{2}>\mathrm{BFClBr}>\mathrm{BF}_{2} \mathrm{Br}>\mathrm{BF}_{2} \mathrm{Cl}$ (b) $\mathrm{BFClBr}>\mathrm{BFBr}_{2}>\mathrm{BF}_{2} \mathrm{Cl}>\mathrm{BF}_{2} \mathrm{Br}$
(c) $\mathrm{BF}_{2} \mathrm{Cl}>\mathrm{BFClBr}>\mathrm{BF}_{2} \mathrm{Br}>\mathrm{BFBr}_{2}$ (d) $\mathrm{BF}_{2} \mathrm{Cl}>\mathrm{BF}_{2} \mathrm{Br}>\mathrm{BFClBr}>\mathrm{BFBr}_{2}$
12. Among the following

I

II

III

IV

VI
The compounds which can be prepared by nucleophilic substitution reaction are:
(a) II, IV and VI
(b) III, IV and V
(c) I, II and VI
(d) I, III and V
13. A reversible heat engine absorbs 20 kJ of heat from a source at 500 K and dissipates it to the reservoir at 400 K . The efficiency of the heat engine is \qquad $\%$.
14. The major product formed in the following reaction

is
(a) non - $2-\mathrm{yn}-6-$ one
(b) non - 3 - en - 8 - one
(c) non $-2-\mathrm{yn}-8$ - one
(d) non $-6-\mathrm{yn}-2-$ one
15. The major product formed in the reaction of $(2 R, 3 R)-2-$ bromo -3 - methylpentane with NaOMe is:
(a) (2S, 3R)-2-methoxy-3-methylpentane
(b) (Z) - 3 - methylpent - 2 - ene
(c) (2R, 3R)-2-methoxy-3-methylpentane
(d) (E) - 3 - methyplent -2 - ene
16. The major product P and Q formed in the following reactions

respectively, are:
(a)

(b)

and

(d)

and

(c)
and

17. 2L of gas at 1 atm pressure is reversibly heated to reach a final volume of 3.5 L . The absolute value of the work done on the gas (rounded off to the nearest integer) is \qquad Joules.
18. The major product formed in the following reaction

is:
(a)

(b)

(c)

(d)

19. The metal borides that contain isolated boron atoms are:
(a) $\mathrm{Ti}_{4} \mathrm{~B}_{4}$ and $\mathrm{V}_{3} \mathrm{~B}_{4}$
(b) TiB and HfB
(c) $\mathrm{Tc}_{7} \mathrm{~B}_{3}$ and $\mathrm{Re}_{7} \mathrm{~B}_{3}$
(d) $\mathrm{Cr}_{5} \mathrm{~B}_{3}$ and $\mathrm{V}_{3} \mathrm{~B}_{2}$
20. The fundamental vibrational frequency of ${ }^{1} \mathrm{H}^{127} \mathrm{I}$ is $2309 \mathrm{~cm}^{-1}$. The force constant for this molecule (rounded off to the nearest integer) is \qquad Nm^{-1}.
$\left[\mathrm{N}=6.022 \times 10^{22}, \mathrm{c}=3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\right]$
21. A correct example of a nucleotide is:
(a) DNA
(b) adenosine monophosphate (AMP)
(c) RNA
(d) uridine
22. The equilibrium constant for the reaction
(a) $\mathrm{NO}(\mathrm{g}) \rightleftharpoons \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+\mathrm{NO}_{2}(\mathrm{~g})$
at $25^{\circ} \mathrm{C}$ is closest to:
$\left[\Delta \mathrm{G}^{\mathrm{o}}=-104.18 \mathrm{~kJ} ; \mathrm{R}=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right]$
(a) 1.8×10^{18}
(b) 1.651
(c) 1.043
(d) 5.7×10^{-19}
23. Which one of the following is a non-heme protein?
(a) hemoglobin
(b) myoglobin
(c) hemocyanin
(d) cytochrome P-450
24. The Mo-Mo bond order in $\left[\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{Mo}(\mathrm{CO})_{2}\right]_{2}$ which obeys the 18 -electron rule is \qquad .
25. The reaction
$\mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{COCl}_{2}(\mathrm{~g})$
at $500^{\circ} \mathrm{C}$, with initial pressures of 0.7 bar of CO and 1.0 bar of Cl_{2}, is allowed to reach equilibrium. The partial pressure of $\mathrm{COCl}_{2}(\mathrm{~g})$ at equilibrium is 0.15 bar . The equilibrium constant for this reaction at $500^{\circ} \mathrm{C}$ (rounded off to two decimal places) is \qquad .
26. In an electrochemical cell, Ag^{+}ions in AgNO_{3} are reduced to Ag metal at the cathode and Cu is oxidized to Cu^{2+} at the anode. A current of 0.7 A is passed through the cell for 10 min . The mass (in grams) of silver deposited and copper dissolved, respectively, are:
[Faraday Constant $=96,485 \mathrm{C} \mathrm{mol}^{-1}$, Atomic Weight of $\mathrm{Ag}=107.9$, Atomic Weight ofCu $=63.55$]
(a) 0.235 and 0.138
(b) 0.469 and 0.069
(c) 0.469 and 0.138
(d) 0.235 and 0.069
27. The yellow color of an aqueous solution of $\mathrm{K}_{2} \mathrm{CrO}_{4}$ changes to red-orange upon the addition of a few drops of HCl . The red-orange complex, the oxidation state of its central element(s), and the originof its color, respectively, are:
(a) perchlorate ion, +7 , charge transfer
(b) chromium chloride, +3 , d-d transition
(c) dichromate ion, +6 and +6 , charge transfer
(d) chromic acid, +6 , charge transfer
28. The correct statement(s) about actinides is/are:
(a) The trans uranium elements are prepared artificially.
(b) The 5 felectrons of actinides are bound less tightly than the $4 f$ electrons.
(c) All the actinides are radioactive.
(d) Actinides do not exhibit actinide contraction.
29. The Δ_{0} of
$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{CrF}_{6}\right]^{3-}$ and $\left[\mathrm{Cr}(\mathrm{CN})_{6}{ }^{3-}\right.$
follows the order:
(a) $\left[\mathrm{CrF}_{6}\right]^{3-}>\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(b) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}>\left[\mathrm{CrF}_{6}\right]^{3-}>\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}$
(c) $\left[\mathrm{CrF}_{6}\right]^{3-}>\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}>\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}$
(d) $\left[\mathrm{Cr}(\mathrm{CN})_{6}\right]^{3-}>\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}>\left[\mathrm{CrF}_{6}\right]^{3-}$
30. The correct statement(s) about the concentration of Na^{+}and K^{+}ions in animal cells is/are:
(a) $\left[\mathrm{K}^{+}\right]$inside the cell $<\left[\mathrm{K}^{+}\right]$outside the cell
(b) $\left[\mathrm{Na}^{+}\right]$inside the cell $<\left[\mathrm{Na}^{+}\right]$outside the cell
(c) $\left[\mathrm{Na}^{+}\right]$inside the cell $>\left[\mathrm{Na}^{+}\right]$outside the cell
(d) $\left[\mathrm{K}^{+}\right]$inside the cell $>\left[\mathrm{K}^{+}\right]$outside the cell
31. The number of photons emitted per nanosecond by a deuterium lamp (400 nm) having a power of 1 microwatt (rounded off to the nearest integer) is \qquad .
$\left[\mathrm{h}=6.626 \times 10^{-34} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1} ; \mathrm{c}=3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}\right]$
32. The spin-only magnetic moment of $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ (rounded off to one decimal place) is \qquad BM.
33. Reaction of LiAlH_{4} with one equivalent of $\mathrm{Me}_{3} \mathrm{~N} \cdot \mathrm{HCl}$ gives a tetrahedral compound, which reacts with another equivalent of $\mathrm{Me}_{3} \mathrm{~N} \cdot \mathrm{HCl}$ to give compound N . The compound N and its geometry, respectively, are:
(a) $\mathrm{LiAlH}_{4} \mathrm{NMe}_{3}$ and trigonal bipyramidal
(b) $\mathrm{AlH}_{3}\left(\mathrm{NMe}_{3}\right)_{2}$ and trigonal bipyramidal
(c) $\mathrm{Li}_{2} \mathrm{AlH}_{4} \mathrm{Cl}$ and square pyramidal
(d) $\mathrm{AlH}_{3}\left(\mathrm{NMe}_{3}\right)_{2}$ and pentagonal
34. hexane and heptane are completely miscible. At $25^{\circ} \mathrm{C}$, the vapor pressures of hexane and heptane are 0.198 atm and 0.06 atm , respectively. The mole fractions of hexane and heptane in the vapor for a solution containing 4 M hexane and 6 M heptane, respectively, are:
(a) 0.600 and 0.400
(b) 0.400 and 0.600
(c) 0.688 and 0.312
(d) 0.312 and 0.688
35. The correct order of increasing intensity (molar absorptivity) of the UV-visible absorption bands for the ions $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+},\left[\mathrm{CrO}_{4}\right]^{2-}$, and $\left[\mathrm{NiCl}_{4}\right]^{2-}$ is
(a) $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}<\left[\mathrm{NiCl}_{4}\right]^{2-}<\left[\mathrm{CrO}_{4}\right]^{2-}<\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
(b) $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}<\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}<\left[\mathrm{CrO}_{4}\right]^{2-}<\left[\mathrm{NiCl}_{4}\right]^{2-}$
(c) $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}<\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}<\left[\mathrm{NiCl}_{4}\right]^{2-}<\left[\mathrm{CrO}_{4}\right]^{2-}$
(d) $\left[\mathrm{NiCl}_{4}\right]^{2-}<\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}<\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{2+}<\left[\mathrm{CrO}_{4}\right]^{2-}\right.$
36. In the following reaction sequence

the major products P and Q , respectively, are:
(a)

(b)

(c)

and

(d)

37. The rate constants for the decomposition of a molecule in the presence of oxygen are $0.237 \times 10^{-4} \mathrm{~L} \mathrm{~mol}^{-}$ ${ }^{1} \mathrm{~s}^{-1}$ at $0^{\circ} \mathrm{C}$ and $2.64 \times 10^{-4} \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ at $25^{\circ} \mathrm{C}\left(\mathrm{R}=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$.
The activation energy for this reaction (rounded off to one decimal place) is \qquad $\mathrm{kJ} \mathrm{mol}^{-1}$.
38. The least acidic among the following compounds

M

N

O

P
is
(a) N
(b) O
(c) P
(d) M
39. The rate of the substitution reaction of $\left[\mathrm{Co}(\mathrm{CN})_{5} \mathrm{Cl}\right]^{3-}$ with OH^{-}to give $\left[\mathrm{Co}(\mathrm{CN})_{5}(\mathrm{OH})\right]^{3-}$
(a) is inversely proportional to the concentration of OH^{-}
(b) depends on the concentrations of both $\left[\mathrm{Co}(\mathrm{CN})_{5} \mathrm{Cl}\right]^{3-}$ and OH^{-}
(c) depends on the concentration of $\left[\mathrm{Co}(\mathrm{CN})_{5} \mathrm{Cl}\right]^{3-}$ only
(d) is directly proportional to the concentration of OH^{-}only
40. Given the initial weight of 1 mg of radioactive ${ }_{27}^{60} \mathrm{Co}$ (half-life $=5.27$ years), the amount disintegrated in 1 year (rounded off to two decimal places) is \qquad mg.
41. The change in enthalpy $(\Delta \mathrm{H})$ for the reaction
$2 \mathrm{P}(\mathrm{s})+3 \mathrm{Br}_{2}(\mathrm{I}) \rightarrow 2 \mathrm{PBr}_{3}(l)$
is -243 kJ . In this reaction, if the amount of phosphorus consumed is 3.1 g , the change in enthalpy (rounded off to two decimal places) is \qquad kJ.
[Atomic Wt. of $\mathrm{P}=31$]
42. The shapes of the compounds
$\mathrm{ClF}_{3}, \mathrm{XeOF}_{2}, \mathrm{~N}_{3}^{-}$and $\mathrm{XeO}_{3} \mathrm{~F}_{2}$ respectively, are:
(a) trigonal planar, T -shape, V -shape and square pyramidal
(b) trigonal planar, trigonal planar, V-shape and trigonal bipyramidal
(c) T-shape, T -shape, linear and trigonal bipyramidal
(d) T-shape, trigonal planar, linear and square pyramidal
43. The number of signal(s) in the ${ }^{1} \mathrm{H}$ NMR spectrum of the following compound

recorded at $25^{\circ} \mathrm{C}$ in CDCl_{3} is \qquad .
44. The normal mode(s) of vibration of $\mathrm{H}_{2} \mathrm{O}$ is/are:
(a)

(b)

(c)

(d)

45. The reaction of NiBr_{2} with two equivalents of PPh_{3} in CS_{2} at $-78^{\circ} \mathrm{C}$ gives a red-colored diamagnetic complex. $\left[\mathrm{NiBr}_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$. This transforms to a green-colored paramagnetic complex with the same molecular formula at $25^{\circ} \mathrm{C}$. The geometry and the number of unpaired electrons in the green-colored complex, respectively, are:
(a) square planar and 2
(b) tetrahedral and 2
(c) square planar and 4
(d) tetrahedral and 1
46. The reagent(s) required for the conversion of hex-3-yne to (E)-hex-3-ene is/are:
(a) $\mathrm{Li} /$ liquid NH_{3}
(b) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{BaSO}_{4}$
(c) LiAlH_{4}
(d) $\mathrm{Bu}_{3} \mathrm{SnH}$
47. A 5 V battery delivers a steady current of 1.5 A for a period of 2 h . The total charge tht has passed through the circuit is \qquad Coulombs.
48. A laser Raman spectrometer operating at 532 nm is used to record the vibrational spectrum of Cl_{2} having its fundamental vibration at $560 \mathrm{~cm}^{-1}$. The Stokes line corresponding to this vibration will be observed at \qquad cm^{-1}. (Rounded off to the nearest integer)
49. In the following reaction

the major products X and Y , respectively, are:
(a)
 and

(b)
 and

(c)
 and

Ph

Ph
(d)
 and

50. The major product formed in the following reaction

is
(a)

(b)

(c)

(d)

51. The phase diagram of CO_{2} is shown below:

The correct statement(s) about CO_{2} is/are:
(a) At_{c}, it can exist in all three phases.
(b) Below T_{c}, it does not exist in liquid state.
(c) Above T_{c}, it does not exist in liquid state.
(d) Above T_{1}, it does not exist in solid state.
52. The molar absorption coefficient of a substance dissolved in cyclohexane is $1710 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}$ at 500 nm . The reduction in intensity of light of the same wavelength that passes through a cell of 1 mm path length containing a $2 \mathrm{mmol}^{-1}$ solution (rounded off to one decimal place) is \qquad \%.
53. An organic compound exhibits the $[\mathrm{M}]^{+},[\mathrm{M}+2]^{+}$and $[\mathrm{M}+4]^{+}$peaks in the intensity ratio 1:2:1 in the mass spectrum, and shows a singlet at $\delta 7.49$ in th ${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3}. The compound is:
(a) 1,2-dibromobenzene
(b) 1,4-dibromobenzene
(c) 1,4-dichlorobenzene
(d) 1,2-dichlorobenzene
54. The major product formed in the following reaction

(i) KNH_{2} (2 equiv)
(ii) $\mathrm{n}-\mathrm{BuBr}$ (1 equiv)
(iii) dil. aqueous NaOH
is:
(a)

(b)

(c)

(d)

55. The rates of alkaline hydrolysis of the compounds shown below

I

II

III
follow the order:
(a) I $>$ II $>$ III
(b) II $>$ III $>$ I
(c) III $>$ I $>$ II
(d) II $>$ I $>$ III

