

GATE (2021)

1. Among the following eight compounds,

The number of compound(s) which can exhibit stereoisomerism is _____

- 2. The characters of E, C_2 , σ_v and σ_v' symmetry operations, in this order, for valid irreducible representation(s) of the C_{2v} point group is /are:
 - (a) 1, 1, 1, 1
- (b) 1, -1, 1, -1
- (c) 1, -1, -1, -1
- (d)-1, 1, 1, -1

1

3. The de Broglie wavelength of an argon atom (mass = 40 amu) traveling at a speed of 250 m s⁻¹ (rounded off to one decimal place) is _____ picometers.

[N =
$$6.022 \times 10^{23}$$
; h = $6.626 \times 10^{-34} \text{ kg m}^2 \text{ s}^{-1}$]

4. The majro product formed in the following reaction

is:

5. The quantity of the cobalt ore $[Co_3(AsO_4)_2 \cdot H_2O]$ required to obtain 1 kg of cobalt (rounded off to two decimal places) is ____ kg. [Atomic Wt. of Co = 59, As = 75, O = 16, H = 1] 6. The major product formed in the following reaction

$$(d) \overset{\text{Me}}{\underset{Ph}{\longleftarrow}} OH$$

7. The major product formed in the following reaction

$$\begin{array}{c|c} Me & CH_2I_2, Zn/Cu \\ Me & SiMe_2Ph & Et_2O \end{array}$$
 is:

8. The geometry and the number of unpaired electrons in tetrakis (1 – norbornyl)Co

respectively, are:

(a) tetrahedral and five

(b) square planar and three

(c) tetrahedral and one

(d) square planar and one

9. Acceptable wavefunction for a quantum particle must be;

(a) even

(b) single – valued

(c) odd

(d) continuous

- 10. The vapour pressure of toluene (Mol. Wt. = 92) is 0.13 atm at 25 °C. If 6 g of a hydrocarbon is dissolved in 92 g of toluene, the vapor pressure drops to 0.12 atm. The molar mass of the hydrocarbon (rounded off to the nearest integer) is _____.
- 11. The correct order of Lewis acid strengths of BF₂Cl, BFClFBr, BF₂Br and BFBr₂ is:
 - (a) $BFBr_2 > BFClBr > BF_2Br > BF_2Cl$ (b) $BFClBr > BFBr_2 > BF_2Cl > BF_3Br$
 - (c) $BF_2Cl > BFClBr > BF_2Br > BFBr_2$ (d) $BF_2Cl > BF_2Br > BFClBr > BFBr_2$
- 12. Among the following

The compounds which can be prepared by nucleophilic substitution reaction are:

- (a) II, IV and VI
- (b) III, IV and V
- (c) I, II and VI
- (d) I, III and V
- 13. A reversible heat engine absorbs 20 kJ of heat from a source at 500 K and dissipates it to the reservoir at 400 K. The efficiency of the heat engine is %.
- 14. The major product formed in the following reaction

is

(a) non - 2 - yn - 6 - one

(b) non - 3 - en - 8 - one

(c) non - 2 - yn - 8 - one

- (d) non 6 yn 2 one
- 15. The major product formed in the reaction of (2R, 3R) 2 bromo 3 methylpentane with NaOMe is:
 - (a) (2S, 3R) 2 methoxy 3 methylpentane
 - (b) (Z) 3 methylpent 2 ene
 - (c) (2R, 3R) 2 methoxy 3 methylpentane
 - (d) (E) 3 methyplent 2 ene

16. The major product P and Q formed in the following reactions

respectively, are:

- 17. 2L of gas at 1 atm pressure is reversibly heated to reach a final volume of 3.5 L. The absolute value of the work done on the gas (rounded off to the nearest integer) is _____ Joules.
- 18. The major product formed in the following reaction

$$OMe$$
+
 OMe
+
 OMe
+
 OMe
(i) OMe
(ii) aqueous acid

is:

(a)
$$OMe$$
 (b) OMe (c) OMe (d) OMe

19.	The metal borides that contain isolated boron atoms are:			
	(a) Ti_4B_4 and V_3B_4 (b) Ti_4	B and HfB	(c) Tc_7B_3 and Re_7B_3	(d) Cr_5B_3 and V_3B_2
20.	The fundamental vibrational frequency of ${}^{1}H^{127}I$ is 2309 cm ${}^{-1}$. The force constant for this molecule (rounded off to the nearest integer) is N m ${}^{-1}$.			
	[N = 6.022×10^{22} , c = 3.0×10^8 m s ⁻¹]			
21.	A correct example of a nucleotide is:			
	(a) DNA		(b) adenosine monophosphate (AMP)	
	(c) RNA		(d) uridine	
22.	The equilibrium constant for the reaction			
	(a) $NO(g) \rightleftharpoons N_2O(g) + NO_2(g)$			
	at 25°C is closest to:			
	$[\Delta G^{o} = -104.18 \text{ kJ}; R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}]$			
	(a) 1.8×10^{18} (b) 1.	_	(c) 1.043	(d) 5.7×10^{-19}
23.	Which one of the following is a non-heme protein?			
	(a) hemoglobin (b) m	yoglobin	(c) hemocyanin	(d) cytochrome P-450
24.	The Mo–Mo bond order in $[(\eta^5-C_5H_5)Mo(CO)_2]$, which obeys the 18-electron rule is			
25.	The reaction			
	$CO(g)+Cl_2(g) \rightleftharpoons COCl_2(g)$			
	at 500°C, with initial pressures of 0.7 bar of CO and 1.0 bar of Cl_2 , is allowed to reach equilibrium. The partial pressure of $COCl_2$ (g) at equilibrium is 0.15 bar. The equilibrium constant for this reaction a 500°C (rounded off to two decimal places) is			
26.	In an electrochemical cell, Ag ⁺ ions in AgNO ₃ are reduced to Ag metal at the cathode and Cu is oxidized to Cu ²⁺ at the anode. A current of 0.7 A is passed through the cell for 10 min. The mass (in grams) of silver deposited and copper dissolved, respectively, are:			
	[Faraday Constant = 96, 485 C mol ⁻¹ , Atomic Weight of Ag = 107.9, Atomic Weight of Cu = 63.55			
	(a) 0.235 and 0.138 (b) 0.			
27.	The yellow color of an aqueous solution of K ₂ CrO ₄ changes to red-orange upon the addition of a few drops of HCl. The red-orange complex, the oxidation state of its central element(s), and the origin of its color, respectively, are:			
	(a) perchlorate ion, +7, charge transfer			
	(b) chromium chloride, +3, d-d transition			
	(c) dichromate ion, +6 and +6, charge transfer			
	(d) chromic acid, +6, charge transfer			
28.	The correct statement(s) about actinides is/are:			
	(a) The trans uranium elements are prepared artificially.			
	(b) The 5f electrons of actinides are bound less tightly than the 4f electrons.			
	(c) All the actinides are radioactive.			
	(d) Actinides do not exhibit ac	(d) Actinides do not exhibit actinide contraction.		

29. The Δ_0 of

 $[Cr(H_2O)_6]^{3+}$, $[CrF_6]^{3-}$ and $[Cr(CN)_6^{3-}]$

follows the order:

- $\begin{array}{ll} \text{(a) } [\text{CrF}_6]^{3-} > [\text{Cr(CN)}_6]^{3-} > [\text{Cr(H}_2\text{O})_6]^{3+} & \text{(b) } [\text{Cr(H}_2\text{O})_6]^{3+} > [\text{CrF}_6]^{3-} > [\text{Cr(CN)}_6]^{3-} \\ \text{(c) } [\text{CrF}_6]^{3-} > [\text{Cr(H}_2\text{O})_6]^{3+} > [\text{Cr(CN)}_6]^{3-} & \text{(d) } [\text{Cr(CN)}_6]^{3-} > [\text{Cr(H}_2\text{O})_6]^{3+} > [\text{CrF}_6]^{3-} \\ \end{array}$

- 30. The correct statement(s) about the concentration of Na⁺ and K⁺ ions in animal cells is/are:
 - (a) $[K^+]$ inside the cell $< [K^+]$ outside the cell
 - (b) [Na⁺] inside the cell < [Na⁺] outside the cell
 - (c) $[Na^+]$ inside the cell $> [Na^+]$ outside the cell
 - (d) $[K^+]$ inside the cell $> [K^+]$ outside the cell
- 31. The number of photons emitted per nanosecond by a deuterium lamp (400 nm) having a power of 1 microwatt (rounded off to the nearest integer) is

 $[h = 6.626 \times 10^{-34} \text{ kg m}^2 \text{ s}^{-1}; c = 3.0 \times 10^8 \text{ m s}^{-1}]$

- 32. The spin-only magnetic moment of $[Co(H_2O)_{\epsilon}]^{2+}$ (rounded off to one decimal place) is BM.
- 33. Reaction of LiAlH, with one equivalent of Me₃N·HCl gives a tetrahedral compound, which reacts with another equivalent of Me₃N·HCl to give compound N. The compound N and its geometry, respectively, are:
 - (a) LiAlH, NMe, and trigonal bipyramidal
- (b) AlH₂(NMe₂), and trigonal bipyramidal
- (c) Li, AlH, Cl and square pyramidal
- (d) AlH₂(NMe₂)₂ and pentagonal
- hexane and heptane are completely miscible. At 25°C, the vapor pressures of hexane and heptane are 34. 0.198 atm and 0.06 atm, respectively. The mole fractions of hexane and heptane in the vapor for a solution containing 4M hexane and 6M heptane, respectively, are:
 - (a) 0.600 and 0.400
- (b) 0.400 and 0.600 (c) 0.688 and 0.312
- (d) 0.312 and 0.688
- 35. The correct order of increasing intensity (molar absorptivity) of the UV-visible absorption bands for the ions $[Ti(H_2O)_6]^{3+}$, $[Mn(H_2O)_6]^{2+}$, $[CrO_4]^{2-}$, and $[NiCl_4]^{2-}$ is
 - (a) $[Ti(H_2O)_6]^{3+} < [NiCl_4]^{2-} < [CrO_4]^{2-} < [Mn(H_2O)_6]^{2+}$
 - (b) $[Ti(H_2O)_6]^{3+} < [Mn(H_2O)_6]^{2+} < [CrO_4]^{2-} < [NiCl_4]^{2-}$
 - (c) $[Mn(H_2O)_6]^{2+} < [Ti(H_2O)_6]^{3+} < [NiCl_4]^{2-} < [CrO_4]^{2-}$
 - (d) $[NiCl_{4}]^{2-} < [Ti(H_{2}O)_{6}]^{3+} < [Mn(H_{2}O)_{6}]^{2+} < [CrO_{4}]^{2-}$
- 36. In the following reaction sequence

the major products P and Q, respectively, are:

37. The rate constants for the decomposition of a molecule in the presence of oxygen are $0.237 \times 10^{-4} \, \text{L mol}^{-1} \, \text{s}^{-1}$ at 0°C and $2.64 \times 10^{-4} \, \text{L mol}^{-1} \, \text{s}^{-1}$ at 25°C (R = $8.314 \, \text{J mol}^{-1} \, \text{K}^{-1}$).

The activation energy for this reaction (rounded off to one decimal place) is _____kJ mol⁻¹.

38. The least acidic among the following compounds

- 39. The rate of the substitution reaction of $[Co(CN)_5C1]^{3-}$ with OH⁻ to give $[Co(CN)_5(OH)]^{3-}$
 - (a) is inversely proportional to the concentration of OH-
 - (b) depends on the concentrations of both [Co(CN), Cl]³⁻ and OH⁻
 - (c) depends on the concentration of [Co(CN)₅Cl]³⁻ only
 - (d) is directly proportional to the concentration of OH-only

- Given the initial weight of 1 mg of radioactive $^{60}_{27}$ Co (half-life = 5.27 years), the amount disintegrated in 40. 1 year (rounded off to two decimal places) is
- 41. The change in enthalpy (ΔH) for the reaction

$$2P(s) + 3Br2(I) \rightarrow 2PBr3(l)$$

is –243 kJ. In this reaction, if the amount of phosphorus consumed is 3.1 g, the change in enthalpy (rounded off to two decimal places) is kJ.

[Atomic Wt. of P = 31]

The shapes of the compounds 42.

respectively, are:

- (a) trigonal planar, T-shape, V-shape and square pyramidal
- (b) trigonal planar, trigonal planar, V-shape and trigonal bipyramidal
- (c) T-shape, T-shape, linear and trigonal bipyramidal
- (d) T-shape, trigonal planar, linear and square pyramidal
- 43. The number of signal(s) in the ¹H NMR spectrum of the following compound

recorded at 25°C in CDCl₃ is _____.

44. The normal mode(s) of vibration of H₂O is/are:

- 45. The reaction of NiBr, with two equivalents of PPh, in CS, at -78°C gives a red-colored diamagnetic complex. [NiBr₂(PPh₂)₂]. This transforms to a green-colored paramagnetic complex with the same molecular formula at 25°C. The geometry and the number of unpaired electrons in the green-colored complex, respectively, are:
 - (a) square planar and 2
- (b) tetrahedral and 2
- (c) square planar and 4
- (d) tetrahedral and 1
- 46. The reagent(s) required for the conversion of hex-3-yne to (E)-hex-3-ene is/are:
 - (a) Li/liquid NH₂
- (b) H_2 , $Pd/BaSO_4$
- (c) LiAlH
- (d) Bu, SnH
- A 5 V battery delivers a steady current of 1.5 A for a period of 2 h. The total charge tht has passed 47. through the circuit is Coulombs.

- 48. A laser Raman spectrometer operating at 532 nm is used to record the vibrational spectrum of Cl₂ having its fundamental vibration at 560 cm⁻¹. The Stokes line corresponding to this vibration will be observed at cm⁻¹. (Rounded off to the nearest integer)
- 49. In the following reaction

S Me
$$\frac{\text{n-BuLi}}{\text{S-Ph}} \times \frac{\text{(i) xylene, reflux}}{\text{(ii) HgCl}_2, CdCO}_3} Y$$

the major products X and Y, respectively, are:

$$(a) \overbrace{ S \atop S \atop O}^{\text{Me}} \underbrace{ Ph \text{ and } O \atop Me}_{\text{Ph}}$$

(b)
$$S$$
 Me Ph and Me Me

$$(d) \begin{array}{|c|c|c|c|} \hline S & Me & & O \\ \hline & & & Me \\ \hline \end{array}$$

50. The major product formed in the following reaction

is

$$\begin{array}{c} \underbrace{\frac{Ph}{\Xi}}, \land CO_2Me \\ (a) & \underbrace{\frac{Ph}{Ph}}, \land CO_2Me \\ (b) & \underbrace{\frac{Ph}{Ph}}, \land CO_2Me \\ (c) & \underbrace{\frac{Ph}{\Xi}}, \land CO_2Me \\ (d) & \underbrace{\frac{Ph}{\Xi}}, \land CO_2Me \\ (d)$$

51. The phase diagram of CO₂ is shown below:

The correct statement(s) about CO₂ is/are:

- (a) At T_c, it can exist in all three phases.
- (b) Below T_c, it does not exist in liquid state.
- (c) Above T_a, it does not exist in liquid state.
- (d) Above T₁, it does not exist in solid state.
- 52. The molar absorption coefficient of a substance dissolved in cyclohexane is 1710 L mol⁻¹ cm⁻¹ at 500 nm. The reduction in intensity of light of the same wavelength that passes through a cell of 1 mm path length containing a 2 mmol L⁻¹ solution (rounded off to one decimal place) is %.
- 53. An organic compound exhibits the $[M]^+$, $[M+2]^+$ and $[M+4]^+$ peaks in the intensity ratio 1:2:1 in the mass spectrum, and shows a singlet at δ 7.49 in th ¹H NMR spectrum in CDCl₃. The compound is:
 - (a) 1,2-dibromobenzene

(b) 1,4-dibromobenzene

(c) 1,4-dichlorobenzene

- (d) 1,2-dichlorobenzene
- 54. The major product formed in the following reaction

is:

55. The rates of alkaline hydrolysis of the compounds shown below

$$t-Bu$$
 I III $t-Bu$ III

follow the order:

- (a) I > II > III
- (b) II > III > I
- (c) III > I > II
- (d) II > I > III