CHEM ACADEMY

CSIR NET (2022)

Section - B

21. Consider the following statements about Infrared (IR) spectroscopy.
A. It is used to determine the band gap, the band structure and the charge carrier concentration of a compound.
B. It is used to identify functional group(s) of a compound.
C. It is used to characterize different stretching and bending modes of vibration in molecules.
D. Heteronuclear diatomic molecules are IR active.

The correct statements are
(a) A, B, C, and D
(b) B, C, and D only
(c) A, B, and C only
(d) B and C only
22. The number of moles of Mg-ATP needed for the reduction of one mole of nitrogen by nitrogenase enzyme is
(a) 8
(b) 16
(c) 6
(d) 2
23. The known oxidation state(s) of Eu in aqueous solution is/are
(a) +2 and +3
(b) +3 and +4
(c) $+2,+3$ and +4
(d) +3 only
24. An octahedral d^{6} complex has a single spin-allowed absorption band. The spin-only magnetic moment (B.M.) and the electronic transition for this complex, respectively, are
(a) 0 and ${ }^{1} \mathrm{~T}_{1 \mathrm{~g}} \leftarrow{ }^{1} \mathrm{~A}_{\mathrm{lg}}$
(b) 4.9 and ${ }^{5} \mathrm{~T}_{2 \mathrm{~g}} \leftarrow{ }^{5} \mathrm{E}_{\mathrm{g}}$
(c) 4.9 and ${ }^{5} \mathrm{E}_{\mathrm{g}} \leftarrow{ }^{5} \mathrm{~T}_{2 \mathrm{~g}}$
(d) 0 and ${ }^{1} \mathrm{~T}_{2 \mathrm{~g}} \leftarrow{ }^{1} \mathrm{~A}_{1 \mathrm{~g}}$
25. The base ionization constant, K_{b}, of ammonia in water is 1.8×10^{-5}. The value of acid ionization constant, K_{a}, of the conjugate acid is closest to
(a) 5.6×10^{-10}
(b) 1.8×10^{9}
(c) 7.0×10^{-7}
(d) 5.6×10^{4}
26. In the solid state, the stable structure of the metal cluster $\left[\mathrm{Ru}_{3}(\mathrm{CO})_{10}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ is
(a)

(b)

(c)

(d)

27. What is the order of decreasing carbonyl stretching frequencies in the following species $(A-D)$?
(A) $\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]^{+}$
(B) $\left[\mathrm{Os}(\mathrm{CO})_{6}\right]^{2+}$
(C) $\left[\operatorname{Ir}(\mathrm{CO})_{6}\right]^{3+}$
(D) Free CO
(a) B $>$ A $>$ C $>$ D
(b) $\mathrm{D}>\mathrm{C}>\mathrm{B}>\mathrm{A}$
(c) A $>$ B $>$ C $>$ D
(d) $\mathrm{C}>\mathrm{B}>\mathrm{D}>\mathrm{A}$
28. Among $\mathrm{Si}_{3} \mathrm{~N}_{4}, \alpha-\mathrm{BN}, \mathrm{AIN}$ and $(\mathrm{SN})_{x}$, the compound with the highest conductivity is
(a) $\mathrm{Si}_{3} \mathrm{~N}_{4}$
(b) $\alpha-\mathrm{BN}$
(c) AIN
(d) $(\mathrm{SN})_{x}$
29. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Fe}(\mathrm{CO})_{2}\right]$ exhibits two peaks of equal intensity at room temperature, but four resonances of relative intensities $5: 2: 2: 1$ at lower temperature. The hapticities of $\mathrm{C}_{5} \mathrm{H}_{5}{ }^{-}$ are
(a) η^{5} and η^{1}
(b) η^{5} and η^{3}
(c) η^{3} and η^{1}
(d) η^{3} and η^{3}
30. For the following nuclear decay series segment,

(a) one β, one α, and one neutron
(b) two β and one α
(c) three β
(d) two β and one neutron
31. In the stratosphere, the radical Cl^{\cdot} produced from chlorofluorocarbons reacts with O_{2} as follows $\mathrm{Cl}^{\cdot+} \mathrm{O}_{2} \longrightarrow \mathrm{X}+$ colorless gas
$2 \mathrm{X} \longrightarrow \mathrm{X}_{2}$
$\mathrm{X}_{2} \longrightarrow \mathrm{Cl}+\mathrm{Y}$
X, Y are, respectively
(a) ClO°,

(b) $\mathrm{ClO}^{\circ}, \mathrm{Cl}-\mathrm{O}-\mathrm{O}^{-}$
(c) $\mathrm{Cl}-\mathrm{O}-\mathrm{O}^{-}$
(d) $\mathrm{ClO}^{\circ}, \mathrm{O}_{2}$

Fhe	$\begin{gathered} \text { mizatiferer } \\ \left(\mathbf{k J ~ m o l}{ }^{-1}\right) \end{gathered}$			$\begin{aligned} & \text { P'blecket } \\ & \left(\mathbf{k J ~ m o l}^{-1}\right) \end{aligned}$	$\begin{gathered} \text { rents }\left(\frac{1}{5}, Y^{\prime}\right. \\ \left(\mathrm{kJ} \mathrm{~mol}^{-1}\right) \end{gathered}$
X	1086	2353	4620	6223	37830
Y	800	2427	3060	25030	32830
Z	496	4562	6910	9543	13350

(a) $\mathrm{X}=2 ; \mathrm{Y}=3 ; \mathrm{Z}=4$
(b) $X=4 ; Y=1 ; Z=1$
(c) $X=4 ; Y=3 ; Z=1$
(d) $X=1 ; Y=3 ; Z=4$
33. The geometry around Te in the symmetrical trimeric species of $\left[\mathrm{TeO}_{2} \mathrm{~F}\right]^{-}$is
(a) Square planar
(b) Tetrahedral
(c) Trigonalbipyramidal
(d) Octahedral
34. Which of the following species is/are aromatic?

A

B

C
(a) only A
(b) only B
(c) only B and C
(d) Only A and B
35. The major product formed in the following reaction is

(a)

(b)

(c)

(d)

36. The following reactions sequence is an example of

(a) convergent synthesis
(b) linear synthesis
(c) diverted synthesis
(d) divergent synthesis
37. The pair of reactions depicted below are

(a) enantioselective reactions
(b) diastereospecific reactions
(c) diastereoselective reactions
(d) enantiospecific reactions
38. The major product formed in the following reaction is

(a)

(b)

(c)

(d)

39. The products of the following reaction of a sample of 2-butanol $(e e=X \%)$ show two doublets in ${ }^{1} \mathrm{H}$ NMR spectrum in the ratio of $3: 2$. The value of X is \qquad -

(a) 40
(b) 60
(c) 20
(d) 80
40. The following reaction involves a

(a) photochemical 10π-electrocyclic ring closure
(b) thermal 10π-electrocyclic ring closure
(c) thermal 10π--electrocyclic ring closure
(d) photochemical 6π-electrocyclic ring closure
41. The number of signals observed in the proton-decoupled ${ }^{13} \mathrm{C}$ NMR spectrum of the following compound is

(a) 4
(b) 2
(c) 3
(d) 5
42. The structure that corresponds to the following ${ }^{1} \mathrm{H}$ NMR spectral data is ${ }^{1} \mathrm{H}$ NMR: $\delta 3.64$ ($\mathrm{s}, 6 \mathrm{H}$), 2.02 (dd, 2H), 1.62 (td, 1H), 1.20 (td, 1H).
(a)

(b)

(c)

(d)

43. The intermediates involved in the given transformation are

(A)

(B)

(C)

(D)

(a) A and D
(b) A and B
(c) C and D
(d) C and B
44. The correct order for the magnitude of heats of formation of the following structural isomers is

$\mathrm{A} \quad \mathrm{B}$

(a) A $>$ B $>$ C
(b) B $>$ A $>$ C
(c) C $>$ A $>$ B
(d) $\mathrm{A}>\mathrm{C}>\mathrm{B}$
45. The correct IUPAC name of the following compound is

(a) (E)-3-(chloromethyl)pent-3-en-2-one
(b) (Z)-3-(chloromethyl)pent-2-en-4-one
(c) (E)-3-(chloromethyl)pent-2-en-4-one
(d) (Z)-3-(chloromethyl)pent-3-en-2-one
46. Biosynthetic precursors of the following natural product are

(A) phenylalanine
(b) alanine
(c) acetyl CoA
(d) gernanyl CoA
(a) B and D
(b) B and C
(c) A and D
(d) A and C
47. The effective activation energy for the reaction:
$\mathrm{A}+\mathrm{B} \underset{\underset{\mathrm{k}_{\mathrm{a}^{\prime}}}{\stackrel{\mathrm{k}_{\mathrm{a}}}{\rightleftharpoons}} \mathrm{I} \xrightarrow{\mathrm{k}_{\mathrm{b}}} \mathrm{P},{ }^{2}}{ }$
with the following potential energy versus reaction coordinate plot is

(a) $\mathrm{E}_{\mathrm{a}}-\mathrm{E}_{\mathrm{a}^{\prime}}-\mathrm{E}_{\mathrm{b}}$
(b) $\mathrm{E}_{\mathrm{a}}+\mathrm{E}_{\mathrm{b}}-\mathrm{E}_{\mathrm{a}^{\prime}}$
(c) $-E_{a}+E_{a^{\prime}}-E_{b}$
(d) $\mathrm{E}_{\mathrm{a}}+\mathrm{E}_{\mathrm{a}^{\prime}}-\mathrm{E}_{\mathrm{b}}$
48. For the formaldehyde molecule $\mathrm{H}_{2} \mathrm{CO}$ having $\mathrm{C}_{2 \mathrm{v}}$ symmetry with the character table as given below,

$\mathrm{C}_{2 \mathrm{v}}$	E	C_{2}	$\sigma_{\mathrm{v}}(\mathrm{xz})$	$\sigma_{\mathrm{v}}(\mathrm{yz})$	
A_{1}	1	1	1	1	z
A_{2}	1	1	-1	-1	R_{z}
B_{1}	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$

the reducible representation $\Gamma_{3 \mathrm{~N}}\left(\right.$ or $\left.\Gamma_{\text {tot }}\right)$ is $\Gamma_{3 \mathrm{~N}}=4 \mathrm{~A}_{1}+\mathrm{A}_{2}+4 \mathrm{~B}_{1}+3 \mathrm{~B}_{2}$. The reducible representation for the vibrational modes alone, namely $\Gamma_{\text {vib }}$ will be
(a) $4 \mathrm{~A}_{2}+2 \mathrm{~B}_{2}$
(b) $3 \mathrm{~A}_{1}+2 \mathrm{~B}_{1}+\mathrm{B}_{2}$
(c) $3 \mathrm{~A}_{1}+\mathrm{B}_{1}+2 \mathrm{~B}_{2}$
(d) $4 \mathrm{~A}_{1}+\mathrm{B}_{1}+\mathrm{B}_{2}$
49. Two schematic potential energy surfaces for bond bending motions are indicated as A and B in the accompanying diagram.

Hydrogen angle deviation

The out-of-plane C-H wags in iodoform and chloroform would respectively correspond to the potential energy surfaces
(a) A and B
(b) A and A
(c) B and A
(d) B and B
50. The eigenfunctions of particle in a cubic box with potential $V=0$ in the region $0 \leq x \leq L, 0 \leq y \leq L$ and $0 \leq \mathrm{z} \leq \mathrm{L}$ and $\mathrm{V}=\infty$ outside $\psi_{\mathrm{n}_{x} \mathrm{n}_{y} \mathrm{n}_{z}}$. Which of the following functions is also an eigenfunction of the Hamiltonian?
(a) $\phi_{1}=\psi_{123}-\psi_{312}$
(b) $\phi_{2}=\psi_{111}+\psi_{222}$
(c) $\phi_{3}=\psi_{121}-\psi_{122}$
(d) $\phi_{4}=\psi_{212}+\psi_{113}$
51. The limiting molar conductivities, at $25^{\circ} \mathrm{C}$, of few ionic compounds are given in the table below. The limiting molar conductivity of Agl, in units of milli-Siemens (metre) ${ }^{2} \mathrm{~mol}^{-1}$, at $25^{\circ} \mathrm{C}$ is

Ionic Compound	Molar conductivity (milli-Siemens (metre) ${ }^{2} \mathrm{~mol}^{-1}$)
NaI	12.69
NaNO_{3}	12.16
AgNO_{3}	13.34

(a) 13.87
(b) 12.73
(c) 11.63
(d) 10.78
52. Given that the commutator $\left[\hat{\mathrm{A}}^{2}, \hat{\mathrm{~B}}\right]=[\hat{\mathrm{A}}, \hat{\mathrm{B}}] \hat{\mathrm{A}}+\hat{\mathrm{A}}[\hat{\mathrm{A}}, \hat{\mathrm{B}}]$, the value of $\left[\mathrm{x},\left[\hat{\mathrm{p}}_{\mathrm{x}}^{2}, \mathrm{x}\right]\right]$ is
(a) $2 i \hbar^{2}$
(b) $2 \hbar^{2}$
(c) $-2 \hbar^{2}$
(d) $-2 \mathrm{i} \hbar^{2}$
53. The energy of an electron in a hydrogenic atom is $-13.6 \mathrm{Z}^{2} / \mathrm{n}^{2} \mathrm{eV}$, where Z is the atomic number and n is the principal quantum number. Neglecting inter-electronic repulsion, the energy of the first excited state of the He atom is
(a) -68.0 eV
(b) -13.6 eV
(c) -27.6 eV
(d) -108.8 eV
54. In the process of polyesterification, the average length of polymer formed by a stepwise process grows linearly with time. The fraction condensed (extent of reaction) and the degree of polymerization attime $\mathrm{t}=1$., hour, of a polymer formed with $\mathrm{K}_{\mathrm{r}}=1.80 \times 10^{-2} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$ and initial monomer concentration of $3.00 \times 10^{-2} \mathrm{~mol} \mathrm{dm}^{-3}$, are respectively
(a) 0.66 and 2.94
(b) 0.33 and 1.50
(c) 0.16 and 1.19
(d) 0.33 and 2.94
55. During the phase transition, at constant temperature, of a solid from one form to another, the change in molar volume, $\Delta \mathrm{V}_{\mathrm{m}}=1.0 \mathrm{~cm}^{3} \mathrm{~mol}^{-1}$ is independent of pressure. The change in molar Gibbs free energy, in units of $\mathrm{J} \mathrm{mol}^{-1}$, when the pressure is increased from 1 bar to 3 bars is
(a) 4×10^{-1}
(b) 3×10^{-1}
(c) 2×10^{-1}
(d) 1×10^{-1}
56. The rotational absorption spectrum of $\mathrm{H}^{35} \mathrm{Cl}$ shows the following lines

Neglecting centrifugal distortion, the value of the rotational constant in units of cm^{-1} is estimated as
(a) 3
(b) 5
(c) 10
(d) 20
57. For a system of two fermionic particles that can be in any one of three possible quantum states each, the ratio of the probability that two particles are in the same state to that when the two particles are in different states is
(a) 1
(b) $\frac{1}{2}$
(c) 0
(d) $\frac{1}{3}$
58. The correct match of the following fine chemical in Column P with their sustainable feedstocks in Column Q is

	Column P		Column Q
A.	I.	Lignin	
B.	II.	Xylose	
C.	III.	Vegetable Oil	

(a) A-i; B-iii, C-ii
(b) A-ii; B-iii, C-i
(c) A-ii; B-ii, C-iii
(d) A-iii; B-ii, C-i
59. For a zero-order reaction $\mathrm{A} \xrightarrow{\mathrm{k}} \mathrm{P}$, if the initial concentration of A is $[\mathrm{A}]_{0}$, the time required to consume all the reactant is
(a) $2[\mathrm{~A}]_{0} / \mathrm{k}$
(b) $[\mathrm{A}]_{0} / \mathrm{k}$
(c) $[\mathrm{A}]-[\mathrm{A}]_{0} / \mathrm{k}$
(d) $\mathrm{k}[\mathrm{A}]_{0}$
60. Given that at $298.15 \mathrm{~K}, \mathrm{E}_{\mathrm{Fe}^{+3} / \mathrm{Fe}}^{0}=-0.04 \mathrm{~V} ; \mathrm{E}_{\mathrm{Fe}^{+2} / \mathrm{Fe}}^{0}=-0.44 \mathrm{~V}$.

At this temperature, the value of $\mathrm{E}_{\mathrm{Fe}^{+3} / \mathrm{Fe}^{+2}}^{0}$ is
(a) 1.24 V
(b) 1.00 V
(c) 0.40 V
(d) 0.76 V

Section-C

61. The number of electrons involved in the enzymatic action of cytochrome c oxidase, carbonic anhydrase and photosynthetic oxygen evolving complex, respectively, are
(a) 2, 0,4
(b) $4,0,4$
(c) $4,1,0$
(d) 2, 0, 2
62. The correct statement regarding the following physical properties is
(a) Bond order follows $\mathrm{Li}_{2}<\mathrm{C}_{2}<\mathrm{B}_{2}<\mathrm{N}_{2}$ order.
(b) Melting point follows $\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{AsH}_{3}<\mathrm{SbH}_{3}$ order.
(c) Pauling electronegativity follows $\mathrm{Al}<\mathrm{Si}<\mathrm{S}<\mathrm{P}$ order.
(d) First ionization energy follows $\mathrm{Li}<\mathrm{B}<\mathrm{Be}<\mathrm{C}$ order.
63. The statement(s) that correctly describe(s) the molecular orbital(MO) diagram of HO (hydroxyl radical) is/are (consider the $\mathrm{O}-\mathrm{GH}$ bond to be along the x -axis)
A. The Highest Occupied Molecular Orbital (HOMO) is a non-bonded MO that is predominantly formed with $2 p_{z}$ and $2 p_{y}$ atomic orbital (AOs) of O-atom
B. The HOMKO is a σ-bonded MO that is predominantly formed by the overlap of $\mathrm{H}(1 \mathrm{~s})$ and $\mathrm{O}(2 \mathrm{~s})$ OAs.
C. The σ-bonding MO is formed by the overlap of $\mathrm{H}(1 \mathrm{~s})$ and $\mathrm{O}\left(2 \mathrm{p}_{z}\right) \mathrm{AOs}$.
D. The σ-bonding MO is formed by the overlap of $\mathrm{H}(1 \mathrm{~s})$ and $\mathrm{O}\left(2 \mathrm{p}_{\mathrm{x}}\right)$ AOs.
(a) A and C only
(b) A and D only
(c) B only
(d) D only
64. Consider the statements about the following species, $\mathrm{CIF},\left[\mathrm{CIF}_{2}\right]^{+}, \mathrm{CIF}_{3},\left[\mathrm{CIF}_{4}\right]^{+}$and CIF_{5}.
A. There are 9 lone pairs of electrons on the chlorine atoms in the five species
B. The species $\left[\mathrm{CIF}_{4}\right]^{+}$has a tetrahedral shape.
C. The compound CIF_{3} is a very strong fluorinating agent.

The correct statements are
(a) B and C only
(b) A and C only
(c) A and B only
(d) A, B, and C
65. The number of allowed EPR lines expected for a metal ion with 3 unpaired electrons and a nuclear spin (I) of $7 / 2$ is
(a) 8
(b) 32
(c) 36
(d) 24
66. The nucleophilic substitution of $R^{\prime} R^{\prime \prime} \operatorname{SiX}\left(R, R^{\prime}, R^{\prime \prime}=\right.$ alkyl groups $)$ by a nucleophile Y gives the product RR'R"SiY. Among the following,
A. Silylium cation is formed during the reaction.
B. It is a second order reaction.
C. The cleavage of the $\mathrm{Si}-\mathrm{X}$ bond is not the rate determining step.
D. The product always shows inversion of configuration.

Identify the correct statements
(a) B and C only
(b) A and B only
(c) C and D only
(d) B, C, and D only
67. The second order rate constants for the outer sphere self-exchange electron transfer reactions for $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} /\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+} /\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}{ }^{3+}\right.$ are $9.2 \times 10^{2} \mathrm{M}^{-1} \mathrm{sec}^{-1}$ and $\leq 10^{-9} \mathrm{M}^{-1}$ sec^{-1}, respectively.
The correct rationable for the above data is
(a) the change in the number of σ^{*}-electrons in $\mathrm{Co}(\mathrm{II}) / \mathrm{Co}($ III $)$ system.
(b) the change in the number of π^{*}-electrons in $\mathrm{Co}(\mathrm{II}) / \mathrm{Co}(\mathrm{III})$ system.
(c) the change in the number of both σ^{*} and π^{*}-electrons in $\mathrm{Co}(\mathrm{II}) / \mathrm{Co}(\mathrm{III})$ system.
(d) the change in the number of σ^{*}-electrons in $\mathrm{Ru}(\mathrm{II}) / \mathrm{Ru}(\mathrm{III})$ system.
68. Consider the following pairs of compounds.
(i) $\mathrm{NH}_{4} \mathrm{Cl}$ and FeO
(ii) $\mathrm{H}_{3} \mathrm{~N}^{2} \mathrm{BF}_{3}$ and BCl_{3}
(iii) $\mathrm{HSO}_{3} \mathrm{~F}$ and HF

The more acidic species in (i), (ii) and (iii) are, respectively
(a) $\mathrm{FeO}, \mathrm{BCl}_{3}$ and HF
(b) $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{H}_{3} \mathrm{~N}^{2} \mathrm{BF}_{3}$ and HF
(c) $\mathrm{FeO}, \mathrm{H}_{3} \mathrm{~N} \cdot \mathrm{BF}_{3}$ and $\mathrm{HSO}_{3} \mathrm{~F}$
(d) $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{BCl}_{3}$ and $\mathrm{HSO}_{3} \mathrm{~F}$
69. Hydrolysis of the purple isomer of the complex $\left[\mathrm{Co}(\text { tren })\left(\mathrm{NH}_{3}\right) \mathrm{Cl}\right]^{2+}[$ tren $=$ Tris(2-aminoethyl)amine] under basic conditions results in two products. The geometry of the intermediate involved in this reaction is
(a) Trigonal bipyramidal(b) square pyramidal
(c) pentagonal planar
(d) tetrahedral
70. Consider the following statements describing the properties of $\left(\mathrm{CF}_{3}\right)_{3}$ B.CO.
A. The CO stretching frequency in IR is less than $2143 \mathrm{~cm}^{-1}$.
B. The ${ }^{19} \mathrm{~F}$ NMR spectrum shows one singlet resonance only.
C. The point group of $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{~B} . \mathrm{CO}$ is $\mathrm{C}_{3 \mathrm{v}}$.
C. $\left(\mathrm{CF}_{3}\right)_{3} \mathrm{~B} . \mathrm{CO}$ reacts with KF to form $\mathrm{K}\left[\left(\mathrm{CF}_{3}\right)_{3} \mathrm{BC}(\mathrm{O}) \mathrm{F}\right]$.

The correct statements are
(a) A, C, and D only
(b) C and D only
(c) A, B, and C only
(d) A and D only
71. A solute S has partition coefficient $\left(\mathrm{K}_{\mathrm{D}}\right)$ of 5.0 between water and chloroform. A 50 mL sample of a 0.050 Maqueous solution of the solute is extracted with 15 mL of chloroform. The extraction efficiency for the separation is
(a) 50%
(b) 60%
(c) 30%
(d) 40%
72. The reaction of MoCl_{2} with $\left[\mathrm{Et}_{4} \mathrm{~N}\right] \mathrm{Cl}$ in dil. HCl and EtOH produces a dianionic hexanuclear metal cluster.
A. The cluster of $\left[\mathrm{Mo}_{6} \mathrm{Cl}_{14}\right]^{2-}$.
B. The cluster has 136 valence electrons.
C. Each metal centre has 4 metal-metal bonds.

Identify the correct statement(s) about the cluster.
(a) B only
(b) A and C only
(c) B and C only
(d) A, B, and C
73. In the following electron transfer reactions, the one in which the bridging ligand comes from the reductant is
(a) $\left[\mathrm{IrCl}_{6}\right]^{2-}+\left[\mathrm{Cr}\left(\mathrm{OH}_{2}\right)_{6}\right]^{2+} \rightarrow$ products
(b) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2-}+\left[\mathrm{Cr}\left(\mathrm{OH}_{2}\right)_{6}\right]^{2+} \rightarrow$ products
(c) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4+}+\left[\mathrm{IrCl}_{6}\right]^{2-} \rightarrow$ products
(d) $\left[\mathrm{CrO}_{4}\right]^{2-}+\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4} \rightarrow$ products
74. The electronic spectrum of an aqueous solution of $\left[\mathrm{Ni}_{\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+} \text { shows three distinct bands: } \mathrm{A}(\sim 400}\right.$ $\mathrm{nm})$, $\mathrm{B}(\sim 690 \mathrm{~nm})$ and $\mathrm{C}(\sim 1070 \mathrm{~nm})$. The transitions assigned to A, B and C, respectively, are
(a) $\mathrm{T}_{1 \mathrm{~g}}(\mathrm{P}) \leftarrow \mathrm{A}_{2 \mathrm{~g}}, \mathrm{~T}_{2 \mathrm{~g}} \leftarrow \mathrm{~A}_{2 \mathrm{~g}}$, and $\mathrm{T}_{1 \mathrm{~g}} \leftarrow \mathrm{~A}_{2 \mathrm{~g}}$
(b) $\mathrm{T}_{1 \mathrm{~g}}(\mathrm{P}) \leftarrow \mathrm{A}_{2 \mathrm{~g}}, \mathrm{~T}_{1 \mathrm{~g}} \leftarrow \mathrm{~A}_{2 \mathrm{~g}}$, and $\mathrm{T}_{2 \mathrm{~g}} \leftarrow \mathrm{~A}_{2 \mathrm{~g}}$
(c) $\mathrm{T}_{2 \mathrm{~g}} \leftarrow \mathrm{~A}_{2 \mathrm{~g}}, \mathrm{~T}_{1 \mathrm{~g}} \leftarrow \mathrm{~A}_{2 \mathrm{~g}}$, and $\mathrm{T}_{1 \mathrm{~g}} \leftarrow \mathrm{~A}_{2 \mathrm{~g}}$
(d) $\mathrm{T}_{1 \mathrm{~g}} \leftarrow \mathrm{~A}_{2 \mathrm{~g}}, \mathrm{~T}_{2 \mathrm{~g}} \leftarrow \mathrm{~A}_{2 \mathrm{~g}}$, and $\mathrm{T}_{1 \mathrm{~g}}(\mathrm{P}) \leftarrow \mathrm{A}_{2 \mathrm{~g}}$
75. Consider the following molecules/ions
A. $\left[\mathrm{Mn}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
B. $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$
C. VCl_{4}

The Jahn-Teller effect is expected for
(a) A and C only
(b) A only
(c) C only
(d) A and B only
76. Identify the series showing isolobal analogy.
A. $\mathrm{CH}_{3},\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]^{+}$
B. $\mathrm{CH}_{3}^{+},\left[\mathrm{Cr}(\mathrm{CO})_{5}\right]^{-}$
(c) $\mathrm{CH}_{3}^{+}, \mathrm{Ni}(\mathrm{CO})_{3}$
(d) $\mathrm{CH}^{+}, \mathrm{CpCo}$
(a) A and B only
(b) A, C, and D only
(c) B and C only
(d) A and D only
77. The calculated magnetic moment (B.M.) for the ground state of a f^{f} ion is
(a) $\sqrt{35} / 7$
(b) $\sqrt{35}$
(c) $\sqrt{35} / 14$
(d) $35 / 14$
78. The reaction of HF and SnO produces P and SnCl_{4} produces Q . Reaction of one of them (P, Q) with NaF yields the species $\mathrm{Na}_{4}\left[\mathrm{Sn}_{3} \mathrm{~F}_{10}\right]$. Among the following,
A. $\left[\mathrm{Sn}_{3} \mathrm{~F}_{10}\right]^{4}$ is obtained from P .
B. In the solid state, P exhibits a ring structure.
C. Stereogenic line pairs of electron are present in both P and Q .
D. Q is a weaker Lewis acid than P .

Identify the correct statements
(a) A and B only
(b) C and D only
(c) A, B, and C only
(d) B, C, and D only
79. Consider the following statements about nanoparticles.
A. The energy gap between the valence and conduction bands is greater for semiconductor nanoparticles than that in metal nanoparticles.
B. Metal nanoparticles exhibit surface plasmon resonance.
C. Top-down and bottom-up synthetic methods are used to prepare nanoparticles.

The correct statements are
(a) B and C only
(b) A and B only
(c) A and C only
(d) A, B and C
80. Consider the following statements about the Oxo-process:
A. The reaction is first order with respect to olefin.
B. The rate is faster for terminal olefins compared to internal olefins.
C. The rate is faster for internal olefins compared to terminal olefins.
D. Excess of CO inhibits the reaction.

The correct statements are
(a) A, B and D only
(b) C and D only
(c) A and B only
(d) A and D only
81. Considering the rate law (rate $=\mathrm{k}[$ epoxide]) for the reaction shown below, the plausible intermediate is

82. The correct match for the molecules given in Column P with the spectral data given in Column Q is

	Column P		Column Q
A.	Ethyl acetate	i.	Two singlets in ${ }^{1}$ H NMR
B.	2-chloropentane	ii.	Peak intensity at M:(M+2) is 3:1 in EI-MS
C.	1,2-dibromo-2- methylpropane	iii.	Absorption band at $1740 \mathrm{~cm}^{-1}$ in IR

(a) A-iii; B-i; C-ii
(b) $\mathrm{A}-\mathrm{i}$; B - iii; C - ii
(c) $\mathrm{A}-\mathrm{ii} ; \mathrm{B}-\mathrm{iii} ; \mathrm{C}-\mathrm{i}$
(d) $\mathrm{A}-\mathrm{iii} ; \mathrm{B}-\mathrm{ii} ; \mathrm{C}-\mathrm{i}$
83. The correct sequence of reagents to effect the following transformation is

(a) i. $\mathrm{CHCl}_{3}, \mathrm{NaOH}$; ii. $\mathrm{Na} /$ liq. NH_{3}; iii. DDQ; iv. $\mathrm{Na} /$ liq. $\mathrm{NH}_{3}, \mathrm{EtOH}$
(b) i. DDQ ;; ii. $\mathrm{Na} /$ liq. $\mathrm{NH}_{3}, \mathrm{EtOH}$; iii. $\mathrm{CHCl}_{3}, \mathrm{NaOH}$; iv. $\mathrm{Na} /$ liq. NH_{3}
(c) i. $\mathrm{Na} /$ liq. $\mathrm{NH}_{3}, \mathrm{EtOH}$; ii. DDQ ; iii. $\mathrm{CHCl}_{3}, \mathrm{NaOH}$; iv. $\mathrm{Na} /$ liq. NH_{3}
(d) i $\mathrm{Na} /$ liq. $\mathrm{NH}_{3}, \mathrm{EtOH}$; II. $\mathrm{CHCl}_{3}, \mathrm{NaOH}$; iii. $\mathrm{Na} /$ liq. NH_{3}; iv. DDQ
84. The structure of the compound A in the following reaction sequence is

85. The major product formed in the following reaction is

(a)

(b)

(c)

(d)

86. Structure ofA, based on the following reaction, is

(a)

(b)

(c)

(d)

87. The major product formed in the following reaction sequence is

(a)

(b)

(c)

(d)

88. The correct statement for the following reaction is

(a) involves intermolecular hydride transfer and the product is achiral
(b) involves intramolecular hydride transfer and the product is achiral
(c) involves intramolecular hydride transfer and the product is chiral
(d) involves intermolecular hydride transfer and the product is chiral
89. The reactions that will furnish $\mathrm{t}-\mathrm{BuCOPh}$ as the major product are
A.

B.

C.

(a) Only A, B and C
(b) Only B, C and D
D.

90. The following transformation involves

(a) (i) Norrish type-II; (ii) fragmentation of a cyclopropyl diradical
(b) (i) Norrish type-I;
(ii) fragmentation of a cyclopropyl diradical
(c) (i) Norrish type-I;
(ii) di- π-methane rearrangement
(d) (i) Norrish type-II; (ii) di- π-methane rearrangement
91. The major products P and Q formed in the following reaction sequence are

(a) $\mathrm{P}=$

(b) $\mathrm{P}=$

(c) $\mathrm{P}=$

(d)

92. The major product formed in the following reaction is

(a)

(b)

(c)

(d)

93. The major product formed in the following reaction is

(a)

(b)

(c)

(d)

94. The intermediates involved in the following reaction are

(a) B and C
(b) B and D
(c) A and C
(d) A and B
95. The reagents A and major product B in the following reaction sequence are

(a) $\mathrm{A}=\mathrm{i} . \mathrm{NaBH}_{4}$; ii. $\mathrm{H}_{2} \mathrm{~S}$, cat piperidine $B=$

(b) $\mathrm{A}=$ i. $\mathrm{H}_{2} \mathrm{~S}$, caat. piperidine; ii. NaBH_{4}

(c) $\mathrm{A}=$ i. $\mathrm{H}_{2} \mathrm{~S}$, cat. piperidine; ii. NaBH_{4}

(d) $\mathrm{A}=\mathrm{i} . \mathrm{NaBH}_{4}$; ii. $\mathrm{H}_{2} \mathrm{~S}$, cat. piperidine

96. The reaction(s) with a positive entropy of activation $\left(\Delta \mathrm{S}^{\neq}\right)$is $($are $)$
A.

B.
 $+\mathrm{HCl}$
C.

(a) A and C
(b) B and C
(c) Only C
(d) A and B
97. Given below are bond dissociation energy ($\mathrm{BDE} ; \mathrm{kJ} \mathrm{mol}^{-1}$) vales. Based on the data, the correct statement about the following equilibrium is

Bond	BDE $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	Bond	BDE $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$
$\mathrm{O}-\mathrm{H}$	-460	$\mathrm{C}-\mathrm{C}$	-360
$\mathrm{C}-\mathrm{H}$	-420	$\mathrm{C}=\mathrm{O}$	-760
$\mathrm{C}-\mathrm{O}$	-380	$\mathrm{C}=\mathrm{C}$	-630

(a) A is more stable than B by $70 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(b) A is more stable than B by $130 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(c) B is more stable than A by $70 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(d) B is more stable than A by $130 \mathrm{~kJ} \mathrm{~mol}^{-1}$
98. The correct structure that corresponds to the spectroscopic data given below is IR (cm^{-1}): 2720, 1710.
${ }^{1} \mathrm{H}$ NMR: $\delta 9.80(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{dd}, \mathrm{J}=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~s}, 3 \mathrm{H}), 3.80$ ($\mathrm{s}, 3 \mathrm{H}$).
(a)

(b)

(c)

(d)

99. The stereochemistry of the double bonds in the product is

(a) $3 \mathrm{E}, 5 \mathrm{E}, 7 \mathrm{Z}$
(b) $3 \mathrm{Z}, 5 \mathrm{E}, 7 \mathrm{E}$
(c) $3 \mathrm{E}, 5 \mathrm{Z}, 7 \mathrm{Z}$
(d) $3 Z, 5 Z, 7 E$
100. Intermediate(s) involved in the following reaction is(are)

A

C
(a) A and C
(b) B and C
(c) only A
(d) only B
101. Give below is a conjugated system of 11 carbon atoms

Assume the average $\mathrm{C}-\mathrm{C}$ bond length to be $1.5 \AA$ and treat the system as 1 -dimensional box. The frequency of radiation required to cause a transition from the ground state of the system to the first excited state (take $\frac{h^{2}}{8 m}-k$) is
(a) $\frac{13 \mathrm{k}}{225 \mathrm{~h}}$
(b) $\frac{11 \mathrm{k}}{225 \mathrm{~h}}$
(c) $\frac{9 \mathrm{k}}{225 \mathrm{~h}}$
(d) $\frac{7 \mathrm{k}}{225 \mathrm{~h}}$
102. The state of an electron is a hydrogenic atom is given by the un-normalised wavefunction
$\phi=\left\{\mathrm{Y}_{10}(\theta, \phi)+\frac{1}{\sqrt{2}} \mathrm{Y}_{11}(\theta, \phi)\right\} \mathrm{R}(\mathrm{r})$
where $\mathrm{Y}_{\mathrm{lm}}(\theta, \phi)$ are spherical harmonics and $\mathrm{R}(\mathrm{r})$ is the radical function. The probability that a measurement of L_{x} will give an eigenvalue of \hbar is
(a) $\frac{1}{2}$
(b) $\frac{1}{\sqrt{2}}$
(c) $\frac{1}{3}$
(d) $\frac{1}{\sqrt{3}}$
103. What is the cell potential (in V) at 298 K and bar for the following cell?
$\mathrm{Zn}(\mathrm{s})\left|\mathrm{ZnBr}_{2}(\mathrm{aq}, 0.2 \mathrm{~mol} / \mathrm{kg}) \| \mathrm{AgBr}(\mathrm{s})\right| \mathrm{Ag}(\mathrm{s}) \mid \mathrm{Cu}$
(given $\mathrm{E}_{\mathrm{Zn}^{+1} / \mathrm{Zn}}^{0}=-0.762 \mathrm{~V}, \mathrm{E}_{\mathrm{AgBr} / \mathrm{Ag}}^{0}=+0.730 \mathrm{~V}$, and assuming $\gamma_{ \pm}$of ZnBr_{2} solution = 0.462) ?
(a) 0.298
(b) 2.198
(c) 0.531
(d) 1.566
104. Which of the following statement/s corresponding to the accompanying figures displaying isotherms is/ are correct?

A. Fig X represents an isotherm of type II and point B shows near complete coverage of the surface
B. Fig Y represents an isotherm oftype II and point B shows near complete coverage of the surface
C. Fig X represents an isotherm of type I and point B shows near complete coverage of the surface
D. Fig Y represents an isotherm of type III and point B shows beginning of the multilayer formation
(a) Only statement D is correct
(b) Statements C and D are correct
(c) Statements B and C are correct
(d) Statements A and B are correct
105. The predicted rate law, using the steady state approximation, for the reaction
$\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{-}+2 \mathrm{I}^{-} \rightarrow \mathrm{I}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
following the possible mechanism is

$\mathrm{H}^{+}+\mathrm{I}^{-} \underset{\mathrm{k}_{-1}}{\stackrel{\mathrm{k}_{1}}{\rightleftharpoons}} \mathrm{HI}$	rapid equilibrium
$\mathrm{HI}+\mathrm{H}_{2} \mathrm{O}_{2} \xrightarrow{\mathrm{k}_{2}} \mathrm{H}_{2} \mathrm{O}+\mathrm{HOI}$	slow
$\mathrm{HOI}+\mathrm{I}^{-} \xrightarrow{\mathrm{k}_{3}} \mathrm{I}_{2}+\mathrm{OH}^{-}$	fast
$\mathrm{OH}^{-}+\mathrm{H}^{+} \xrightarrow{\mathrm{k}_{4}} \mathrm{H}_{2} \mathrm{O}$	fast

(a) $\frac{\mathrm{k}_{1} \mathrm{k}_{2}\left[\mathrm{H}^{+}\right]\left[\mathrm{I}^{-}\right]\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]}{\mathrm{k}_{-1}+\mathrm{k}_{2}\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]}$
(b) $\mathrm{k}_{2}[\mathrm{HI}]\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$
(c) $\mathrm{k}_{1} \mathrm{k}_{-1} \mathrm{~K}_{2}[\mathrm{HI}]\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$
(d) $\frac{\mathrm{k}_{2} \mathrm{k}_{1}}{\mathrm{k}_{-1} \mathrm{k}_{4}}\left[\mathrm{H}^{+}\right]\left[\mathrm{I}^{-}\right]\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]$
106. The lattice structure of $\alpha-\mathrm{Fe}(\mathrm{BCC})$ with some lattice planes are shown in the figure
A

B

C

D

(a) A and D
(b) A and C
(c) B and C
(d) C and D
107. For a particle exhibiting simple harmonic motion in 1-dimension, the uncertainty in its position in the state having the following schematic wave function is (zero point energy, $\mathrm{E}_{0}=\frac{1}{2} \hbar \omega$)

(a) $\frac{7 \mathrm{E}_{0}}{\mathrm{k}}$
(b) $\sqrt{\frac{14 \mathrm{E}_{0}}{\mathrm{k}}}$
(c) $\frac{14 \mathrm{E}_{0}}{\mathrm{k}}$
(d) $\sqrt{\frac{7 \mathrm{E}_{0}}{\mathrm{k}}}$
108. 1 mole of ${ }^{16} \mathrm{O}_{2}$ and 1 mole of ${ }^{18} \mathrm{O}_{2}$ in two different containers of the same volume have the same entropy. Assuming there are no rotational and vibrational contributions to the entropy, if the temperature of ${ }^{16} \mathrm{O}_{2}$ is 300 K what is the temperature of ${ }^{18} \mathrm{O}_{2}$ in K ?
(a) 37.54
(b) 300.10
(c) 266.66
(d) 273.48
109. The molecular weight of plythene determined in five individual experiments is given below.

Experiment No.	Molecular weight $(\mathrm{g} / \mathrm{mol})$
1	10,000
2	11,000
2	9,000
4	10,500
5	11,500

The standard deviation in the above measurements is closest to
(a) $850 \mathrm{~g} / \mathrm{mol}$
(b) $2000 \mathrm{~g} / \mathrm{mol}$
(c) $1600 \mathrm{~g} / \mathrm{mol}$
(d) $500 \mathrm{~g} / \mathrm{mol}$
110. The effective rate constants for a gaseous unimolecular reaction: $\mathrm{A} \rightarrow \mathrm{P}$ following the LindemannHinshelwood mechanism are $1.70 \times 10^{-3} \mathrm{~s}^{-1}$ and $2.20 \times 10^{-4} \mathrm{~s}^{-1}$ at $[\mathrm{A}]=4.37 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3}$ and $1.00 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$, respectively. The rate constant for the activation step in the mechanism is approximately equal to (in $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$)
(a) 12.3
(b) 49.4
(c) 6.1
(d) 24.7
111. For the molecule methylenecyclopropene (structure given below), the roots obtained from the Huckel secular determinant can be approximate as $\mathrm{x}=-2.0,-0.30,+1.0,+1.5$, where $\mathrm{x}=\frac{\alpha-\mathrm{E}}{\beta}$, with E being the energy of a π orbital.

The delocalization energy of methylenecyclopropene is: (Given the energy of the ground state π orbital of ethylene is $E=\alpha+\beta$)
(a) $2 \alpha+2.6 \beta$
(b) $-(2 \alpha+1.7 \beta)$
(c) 0.6β
(d) 0.3β
112. In the reaction between two ions, the rate constant is ${k_{r}}_{r}$ when the ionic strength (I) is 0.004 . And the rate constant is $\mathrm{k}_{\mathrm{r}}^{0}$ when the activity coefficient is 1 . The ratio $\mathrm{k}_{\mathrm{r}} / \mathrm{k}_{\mathrm{r}}^{0}=0.884$. If the charge of one ion is +1 , the charge of other ion is close to
(Debye-Huckel constant $=0.509$ at $298 \mathrm{~K} ; \log 0.884=-0.05$)
(a) -1.554
(b) -1.395
(c) -0.777
(d) -0.389
113. The vibrational energy of the $\mathrm{n}^{\text {th }}$ state of HCl is approximately given as

$$
\mathrm{G}(\mathrm{n})=3000\left(\mathrm{n}+\frac{1}{2}\right)-50\left(\mathrm{n}+\frac{1}{2}\right)^{2}\left(\mathrm{in} \mathrm{~cm}^{-1}\right)
$$

The vibrational quantum number, $\mathrm{n}_{\max }$, beyond which HCl undergoes dissociation is
(a) 29
(b) 59
(c) 119
(d) 19
114. A protein has 3 tyrosine residues and ' n ' tryptophan residues both of which are the only amino acids absorbing at 280 nm . If the absorbance of the protein having a concentration of $10 \mu \mathrm{M}$ (in a cuvette of path length 2 cm) is 0.59 , the number of tryptophan residues in the protein must be
[Given: $\varepsilon_{208}($ Tyrosine $)=1500 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$
ε_{208} (Tryptophan) $\left.=5000 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right]$
(a) 11
(b) 5
(c) 2
(d) 7
115. For a $\mathrm{C}-\mathrm{H}$ bond with a stretching frequency $3000 \mathrm{~cm}^{-1}$, what is the expected isotope (deuterium) effect $\mathrm{k}_{\mathrm{H}} / \mathrm{K}_{\mathrm{D}}$ at 298 K for a full bond homolysis? Given $=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}, \mathrm{c}=3 \times 10^{10} \mathrm{~cm} / \mathrm{s}, \mathrm{k}_{\mathrm{B}}=1.38$ $\times 10^{-23} \mathrm{~J} / \mathrm{K}$
(a) e
(b) 1
(c) e^{4}
(d) e^{2}
116. The partition function for a gas is given by
$\mathrm{Q}(\mathrm{N}, \mathrm{V}, \mathrm{T})=\frac{1}{\mathrm{~N}!}\left(\frac{2 \pi \mathrm{~m}}{\mathrm{~h}^{2} \beta}\right)^{3 \mathrm{~N} / 2}(\mathrm{~V}-\mathrm{Nb})^{\mathrm{N}} \mathrm{e}^{\frac{\beta a \mathrm{~N}^{2}}{\mathrm{~V}}}$
The internal energy of the gas is
(a) $\frac{3}{2} \mathrm{Nk}_{\mathrm{B}} \mathrm{T}+\frac{2 \alpha \mathrm{~N}}{\mathrm{~V}}$
(b) $\frac{1}{2} \mathrm{Nk}_{\mathrm{B}} \mathrm{T}+\frac{\alpha \mathrm{N}^{2}}{\mathrm{~V}}$
(c) $\frac{3}{2} \mathrm{Nk}_{\mathrm{B}} \mathrm{T}-\frac{\alpha \mathrm{N}^{2}}{\mathrm{~V}}$
(d) $\frac{3}{2} \mathrm{NRT}-\frac{2 \alpha \mathrm{~N}}{\mathrm{~V}}$
117. The Gibbs free energy of mixing for a regular binary solution of components A and B , at temperature T , on the basis of the Margules equation for activity coefficient, is (in standard notation)
(a) $\operatorname{nRT}\left(\mathrm{x}_{\mathrm{A}} \ln \mathrm{x}_{\mathrm{A}}+\mathrm{x}_{\mathrm{B}} \ln \mathrm{x}_{\mathrm{B}}\right)$
(b) $n R T\left(x_{A} \ln x_{A}+x_{B} \ln x_{B}+\xi x_{A} x_{B}\right)$
(c) $n R T\left(x_{A} \ln \gamma_{A}+x_{B} \ln \gamma_{\mathrm{B}}\right)$
(d) $n R T \xi x_{A} x_{B}$
118. Six distinguishable particles are distributed over 3 non- degenerate levels, of energies $0, \varepsilon$ and 2ε. The most probable value for the total energy is
(a) 5ε
(b) 7ε
(c) 8ε
(d) 6ε
119. A symmetric top molecule with moments of intertia $I_{x}=I_{y}$ and I_{z} in the body-fixed axes is described by the Hamiltonian

$$
\mathrm{H}=\frac{1}{2 \mathrm{I}_{\mathrm{x}}}\left(\mathrm{~L}_{\mathrm{x}}^{2}+\mathrm{L}_{\mathrm{y}}^{2}\right)+\frac{1}{2 \mathrm{I}_{\mathrm{z}}} \mathrm{~L}_{\mathrm{z}}^{2}
$$

If $\mathrm{I}_{\mathrm{x}}=1$ and $\mathrm{I}_{\mathrm{x}}=\frac{1}{2}$, the eigenvalues of the levels with quantum numbers $l=1, \mathrm{~m}_{1}=1$ and $l=1, \mathrm{~m}_{1}=$ 0 are, respectively
(a) $\frac{3 \hbar^{2}}{2}$
(b) \hbar^{2} and $-\hbar^{2}$
(c) $\frac{3 \hbar^{2}}{2}$ and \hbar^{2}
(d) $-\hbar^{2}$ and \hbar^{2}
120. Carbonic anhydrase $\left(2.5 \times 10^{-9} \mathrm{~mol} \mathrm{dm}^{-3}\right)$ catalyses hdration of CO_{2} in red blood cells at pH 7.1 and 274 K . The rate of the reaction, v (in $\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$) reaches its maximum value when varied with the substrate (S) concentration (in $\mathrm{mmol} \mathrm{dm}^{-3}$) according to the following equation
$\frac{1}{v}=4\left\{1+\frac{10}{[\mathrm{~S}]_{0}}\right\}$
The catalytic efficiency of the enzyme (in $\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}$) is
(a) 4×10^{5}
(b) 10^{6}
(c) 10^{7}
(d) 10^{4}

