CHEM ACADEMY

IIT JAM (2022)

Section-A

1. The reagent required for the following transformation

(a) NaBH_{4}
(b) LiAlH_{4}
(c) $\mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{THF}$
(d) $\mathrm{Zn}(\mathrm{Hg}) / \mathrm{HCl}$
2. The major product formed in the following reaction

(a)

(\pm
(b)

(\pm)
(c)

(\pm)
(d)

(\pm
3. The major product formed in the following reaction

(a)

(b)

(c)

(d)

4. The major product formed in the following reaction
$\mathrm{K}+\mathrm{O}_{2} \rightarrow$ is
(a) $\mathrm{K}_{2} \mathrm{O}$
(b) $\mathrm{K}_{2} \mathrm{O}_{2}$
(c) KO_{2}
(d) $\mathrm{K}_{2} \mathrm{O}_{3}$
5. Which one of the following options is best suited for effecting the transformation?

(a) MnO_{2}
(b) $\mathrm{DMSO},(\mathrm{COCl})_{2}, \mathrm{Et}_{3} \mathrm{~N}$
(c) $\mathrm{Al}(\mathrm{Oi}-\mathrm{Pr})_{3}$
(d) $\mathrm{Ag}_{2} \mathrm{O} / \mathrm{NH}_{4} \mathrm{OH}$
6. The structure of $\left[\mathrm{XeF}_{8}\right]^{2-}$ is
(a) cubic
(b) hexagonal bipyramid
(c) square antiprism
(d) octagonal
7. Among the following, the compound that forms the strongest hydrogen bond is
(a) HF
(b) HCl
(c) HBr
(d) HI
8. Among the following, the biomolecule with a direct metal-carbon bond is
(a) coenzyme B_{12}
(b) nitrogenase
(c) chlorophyll
(d) hemoglobin
9. For the reaction
$\mathrm{H}_{2} \mathrm{PO}_{2}^{-}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq}) \rightarrow \mathrm{HPO}_{3}{ }^{2-}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$
the rate expression is $\mathrm{k}\left[\mathrm{H}_{2} \mathrm{PO}_{2}^{-}\right]\left[\mathrm{OH}^{-}\right]^{2}$. If the concentration of $\mathrm{H}_{2} \mathrm{PO}_{2}^{-}$is doubled, the rate is
(a) tripled
(b) halved
(c) doubled
(d) unchanged
10. The nature of interaction involved at the gas-solid interface in physisorption is
(a) ionic
(b) van der Waals
(c) hydrogen bonding
(d) covalent
11. The major product formed in the following reaction

(a)

(b)

(c)

(d)

12. An organic compound having molecular formula $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}$ exhibits the following spectral characteristics:
${ }^{1} \mathrm{H}$ NMR: $\delta 9.72(\mathrm{t}, 1 \mathrm{H}), 7.1(\mathrm{~d}, 2 \mathrm{H}), 6.7(\mathrm{~d}, 2 \mathrm{H}), 3.8(\mathrm{~s}, 3 \mathrm{H}), 3.6(\mathrm{~d}, 2 \mathrm{H})$
IR: $\sim 1720 \mathrm{~cm}^{-1}$
The most probable structure of the compound is
(a)

(b)

(c)

(d)

13. The major product formed in the reaction of $(2 \mathrm{~S}, 3 \mathrm{R})$-2-chloro-3-phenylbutane with NaOEt in EtOH is
(a) (E)-2-phenyl-but-2-ene
(b) (Z)-2-phenyl-but-2-ene
(c) 3-phenyl-but-1-ene
(d) (2R,3R)-2-ethoxy-3-phenylbutane
14. The major product formed in the following reaction

(a)

(b)

(c)

(d)

15. The reactivity of the enol derivatives

I II III
towards benzaldehyde follows the order
(a) I $>$ II $>$ III
(b) III $>$ II $>$ I
(c) II $>$ I $>$ III
(d) I $>$ III $>$ II
16. All possible lattice types are observed in the
(a) cubic crystal system
(b) monoclinic crystal system
(c) tetragonal crystal system
(d) orthorhombic crystal system
17. The structure types of $\mathrm{B}_{10} \mathrm{H}_{10}{ }^{2-}$ and $\mathrm{B}_{10} \mathrm{H}_{14}$, respectively, are
(a) closo and nido
(b) nido and arachno
(c) nido and closo
(d) closo and arachno
18. The ground state and the maximum number of spin-allowed electronic transitions possible in a Co^{2+} tetrahedral complex, respectively, are
(a) ${ }^{4} \mathrm{~A}_{2}$ and 3
(b) ${ }^{4} \mathrm{~T}_{1}$ and 2
(c) ${ }^{4} \mathrm{~A}_{2}$ and 2
(d) ${ }^{4} \mathrm{~T}_{1}$ and 3
19. The correct statement about the geometries of BH_{2}^{+}and NH_{2}^{+}based on valence shell electron pair repulsion (VSEPR) theory is
(a) both BH_{2}^{+}and NH_{2}^{+}are trigonal planar
(b) BH_{2}^{+}is linear and NH_{2}^{+}is trigonal planar
(c) BH_{2}^{+}is trigonal planar and NH_{2}^{+}is linear
(d) both BH_{2}^{+}and NH_{2}^{+}are linear
20. The order of increasing CO stretching frequencies in $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{-},\left[\mathrm{Cu}(\mathrm{CO})_{4}\right]^{+},\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{2-}$ and $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ is
(a) $\left[\mathrm{Cu}(\mathrm{CO})_{4}\right]^{+}<\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]<\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{-}<\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{2-}$
(b) $\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{2-}<\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{-}<\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]<\left[\mathrm{Cu}(\mathrm{CO})_{4}\right]^{+}$
(c) $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{-}<\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{2-}<\left[\mathrm{Cu}(\mathrm{CO})_{4}\right]^{+}<\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$
(d) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]<\left[\mathrm{Cu}(\mathrm{CO})_{4}\right]^{+}<\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{-}<\left[\mathrm{Fe}(\mathrm{CO})_{4}\right]^{2-}$
21. The reaction of 2,4-dinitrofluorobenzene with hydrazine produces a yellow orange solid X used for the identification of an organic functional group G . X and G , respectively, are
(a)
 and carboxylic acid
(b)

(c)

(d)
 and carboxylic acid
22. The stability of adducts $\mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{PF}_{3}, \mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{NMe}_{3}, \mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{CO}, \mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{OMe}_{2}$ follows the order
(a) $\mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{OMe}_{2}<\mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{CO}<\mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{PF}_{3}<\mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{NMe}_{3}$
(b) $\mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{PF}_{3}<\mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{CO}<\mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{NMe}_{3}<\mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{OMe}_{2}$
(c) $\mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{CO}<\mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{PF}_{3}<\mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{NMe}_{3} \cdot \mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{OMe}_{2}$
(d) $\mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{PF}_{3}<\mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{CO}<\mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{OMe}_{2} \cdot \mathrm{H}_{3} \mathrm{~B} \cdot \mathrm{NMe}_{3}$
23. The spacing between successive rotational energy levels of a diatomic molecule XY and its heavier isotopic analogue $\mathrm{X}^{\prime} \mathrm{Y}^{\prime}$ varies with the rotational quantum number, J , as
(a)

(b)

(c)

(d)

24. The ratio of the $2 \mathrm{p} \rightarrow 1$ s transition energy in He^{+}to that in the H atom is closest to
(a) 1
(b) 2
(c) 4
(d) 8
25. The phase diagram of water is best represented by
(a)

(b)

(c)

(d)

26. Capillary W contains water and capillary M contains mercury. The contact angles between the capillary wall and the edge of the meniscus at the air-liquid interface in W and M are $\mathrm{W} \theta_{\mathrm{w}}$ and $\mathrm{M} \theta_{\mathrm{M}}$, respectively.
The contact angles satisfy the conditions
(a) $\theta_{\mathrm{w}}>90^{\circ}$ and $\theta_{\mathrm{m}}>90^{\circ}$
(b) $\theta_{\mathrm{w}}>90^{\circ}$ and $\theta_{\mathrm{m}}<90^{\circ}$
(c) $\theta_{\mathrm{w}}<90^{\circ}$ and $\theta_{\mathrm{M}}>90^{\circ}$
(d) $\theta_{\mathrm{w}}<90^{\circ}$ and $\theta_{\mathrm{M}}<90^{\circ}$
27. The Maxwell-Boltzmann distribution $\mathrm{f}\left(v_{\mathrm{x}}\right)$ of one-dimensional velocities v_{x} at temperature T is
[Given: A is a normalization constant such that $\int_{-\infty}^{\infty} \mathrm{f}\left(v_{x}\right) \mathrm{d} v_{x}=1$ and k_{B} is the Boltzmann constant]
(a) $A \exp \left(-m v_{x}^{2} / 2 \mathrm{k}_{\mathrm{B}} \mathrm{T}\right)$
(b) $A \exp \left(-m v_{x}^{2} / \mathrm{k}_{\mathrm{B}} \mathrm{T}\right)$
(c) $A v_{x}^{2} \exp \left(-m v_{x}^{2} / 2 \mathrm{k}_{\mathrm{B}} \mathrm{T}\right)$
(d) $A v_{x}^{2} \exp \left(-m v_{x}^{2} / \mathrm{k}_{\mathrm{B}} \mathrm{T}\right)$
28. The potential for a particle in a one-dimensional box is given as:
$V(x)=0$ for $0 \leq x \leq L$, and $V(x)=\infty$ elsewhere.
The locations of the internal nodes of the eigenfunctions $\psi_{n}(x), n \geq 2$, are
[Given: m is an integer such that $0<\mathrm{m}<\mathrm{n}$]
(a) $x=\frac{m+\frac{1}{2}}{n} L$
(b) $x=\frac{m}{n} L$
(c) $x=\frac{m}{n+1} L$
(d) $x=\frac{m+1}{n+1} L$
29. The number of CO stretching bands in the infrared spectrum of $\mathrm{Fe}(\mathrm{CO})_{5}$ is
(a) 1
(b) 2
(c) 3
(d) 4
30. The standard Gibbs free energy change for the reaction
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$
at $2500 \mathrm{~K}^{\text {is }}+118 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
The equilibrium constant for the reaction is
[Given: $\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$]
(a) 0.994
(b) 1.006
(c) 3.42×10^{-3}
(d) 292.12

Section-B

1. Among the following, the reaction(s) that favor(s) the formation of the products at $25^{\circ} \mathrm{C}$ is/are
(a)

(b)

(c)

(d)

2. Among the following, the correct statement(s) is/are:
(a) The first pK_{a} of malonic acid is lower than the pK_{a} of acetic acid while its second pK_{a} is higher than the pK_{a} of acetic acid.
(b) The first pK_{a} ofmalonic acid is higher than the pK_{a} of acetic acid while its second pK_{a} is lower than the pK_{a} of acetic acid.
(c) Both the first and the second $\mathrm{pK}_{\mathrm{a}} \mathrm{s}$ of malonic acid are lower than the pK_{a} of acetic acid.
(d) Both the first and the second $\mathrm{pK}_{\mathrm{a}} \mathrm{s}$ of malonic acid are higher than the pK_{a} of acetic acid.
3. The compound(s) that participate(s) in Diels-Alder reaction with maleic anhydride is/are
(a)

(b)

(c)

(d)

4. Among the following, the suitable route(s) for the conversion of benzaldehyde to acetophenone is/are
(a) $\mathrm{CH}_{3} \mathrm{COCl}$, anhydrous AlCl_{3}
(b) (i) $\mathrm{HS}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}, \mathrm{F}_{3} \mathrm{~B} \cdot \mathrm{OEt}_{2}$; (ii) n-BuLi; (iii) MeI ; (iv) $\mathrm{HgCl}_{2}, \mathrm{CdCO}_{3}, \mathrm{H}_{2} \mathrm{O}$
(c) $\mathrm{NaNH}_{2}, \mathrm{MeI}$
(d) (i) MeMgBr ; (ii) aq. acid; (iii) pyridinium chlorochromate (PCC)
5. The reaction

involve(s)
(a) migratory insertion
(b) change in electron count of Rh from 18 to 16
(c) oxidative addition
(d) change in electron count of Rh from 16 to 18
6. The reason(s) for the lower stability of $\mathrm{Si}_{2} \mathrm{H}_{6}$ compared to $\mathrm{C}_{2} \mathrm{H}_{6}$ is/are
(a) silicon is more electronegative than hydrogen
(b) $\mathrm{Si}-\mathrm{Si}$ bond is weaker than $\mathrm{C}-\mathrm{C}$ bond
(c) $\mathrm{Si}-\mathrm{H}$ bond is weaker than $\mathrm{C}-\mathrm{H}$ bond
(d) the presence of low-lying d-orbitals in silicon
7. For an N -atom nonlinear polyatomic gas, the constant volume molar heat capacity $\mathrm{C}_{\mathrm{v}, \mathrm{m}}$ has the expected value of3($\mathrm{N}-1$) R, based on the principle of equipartition of energy. The correct statement(s) about the measured value of $\mathrm{C}_{\mathrm{v}, \mathrm{m}}$ is/are
(a) The measured $\mathrm{C}_{\mathrm{v}, \mathrm{m}}$ is independent of temperature.
(b) The measured $\mathrm{C}_{\mathrm{v}, \mathrm{m}}$ is dependent on temperature.
(c) The measured $\mathrm{C}_{\mathrm{v}, \mathrm{m}}$ is typically lower than the expected value.
(d) The measured $\mathrm{C}_{\mathrm{v}, \mathrm{m}}$ is typically higher than the expected value.
8. Zinc containing enzyme(s) is/are
(a) carboxypeptidase
(b) hydrogenase
(c) carbonic anhydrase
(d) urease
9. The conversion of ICl to ICl^{+}involve(s)
(a) the removal of an electron from a π^{*} molecular orbital of ICl
(b) an increase in the bond order from 1 in ICl to $1.5{\mathrm{in} \mathrm{ICl}^{+}}^{+}$
(c) the formation of a paramagnetic species
(d) the removal of an electron from a molecular orbital localized predominantly on Cl
10. The common point defect(s) in a solid is/are
(a) Wadsley defect
(b) Schottky defect
(c) Suzuki defect
(d) Frenkel defect

Section-C

1. Among the following

the number of aromatic compounds is \qquad .
2. The number of stereoisomers possible for the major product formed in the reaction

is \qquad
3. The number of signals observed in the ${ }^{1} \mathrm{H}$ NMR spectrum of the compound

is \qquad .
4. The reaction of 122 g of benzaldehyde with 108 g of phenylhydrazine gave 157 g of the product

The yield of the product is \qquad \%. (round off to the nearest integer)
5. The $\mathrm{B}-\mathrm{B}$ bond order in B_{2} is \qquad .
6. The number of unpaired electrons in $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is \qquad .
7. The number of significant figures in 5.0820×10^{2} is \qquad .
8. The d spacing for the first-order X-ray $\left(\lambda=1.54 \AA\right.$) diffraction event of metallic iron (fcc) at $2 \theta=20.2^{\circ}$ is \qquad \AA. (round off to three decimal places)
9. The volume fraction for an element in an fcc lattice is \qquad . (round off to two decimal places)
10. A steady current of 1.25 A is passed through an electrochemical cell for 1.5 h using a 12 V battery. The total charge, Q , drawn during this process is \qquad Coulombs. (round off to the nearest integer).
11. The specific rotation of optically pure (R)-1-phenylethylamine is +40 (neat, $20^{\circ} \mathrm{C}$). A synthetic sample of the same compound is shown to contain $4: 1$ mixture of (S) - and (R)-enantiomers. The specific rotation of the neat sample at $20^{\circ} \mathrm{C}$ is \qquad . (round off to the nearest integer)
12. The number of β particles emitted in the nuclear reaction ${ }_{92}^{238} \mathrm{U} \rightarrow{ }_{82}^{206} \mathrm{~Pb}$ is \qquad .
13. Iron is extracted from its ore via the reaction
$\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$
The volume of CO (at STP) required to produce 1 kg of iron is \qquad liters.
(round off to the nearest integer)
[Given: Atomic wt. of $\mathrm{Fe}=56$; assume STP to be $0^{\circ} \mathrm{C}$ and 1 atm]
14. Total degeneracy (number ofmicrostates) for a Ti^{3+} ion in spherical symmetry is \qquad .
15. A galvanic electrochemical cell made of $\mathrm{Zn}^{2+} / \mathrm{Zn}$ and $\mathrm{Cu}^{2+} / \mathrm{Cu}$ half-cells produces 1.10 V at $25^{\circ} \mathrm{C}$. The ratio of $\left[\mathrm{Zn}^{2+}\right]$ to $\left[\mathrm{Cu}^{2+}\right]$ is maintained at 1.0 . The $\Delta \mathrm{G}^{0}$ for the reaction when 1.0 mol of Zn gets dissolved is \qquad kJ . (round off to the nearest integer)
[Given: Faraday's constant $=96485 \mathrm{C} \mathrm{mol}^{-1}$]
16. At constant volume, 1.0 kJ of heat is transferred to 2 moles of an ideal gas at 1 atm and 298 K . The final temperature of the ideal gas is \qquad K. (round off to one decimal place)
[Given: $\mathrm{R}=8.314 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$]
17. Two close lying bands in a UV spectrum occur at 274 nm and 269 nm . The magnitude of the energy gap between the two bands is \qquad cm^{-1}. (round off to the nearest integer)
18. The pH of an aqueous buffer prepared using $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COO}^{-} \mathrm{Na}^{+}$is 4.80 .

This quantity $\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]-\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}$ is \qquad .
(round off to three decimal places)
[Given: pK_{a} of $\mathrm{CH}_{3} \mathrm{COOH}$ in water is 4.75]
19. At constant temperature, 6.40 g of a substance dissolved in 78 g of benzene decreases the vapor pressure of benzene from 0.125 atm to 0.119 atm .

The molar mass of the substance is \qquad $\mathrm{g} \mathrm{mol}^{-1}$. (round off to one decimal place)
[Given: Mol. wt. of benzene $=78 \mathrm{~g} \mathrm{~mol}^{-1}$]
20. For a van der Waals gas, the critical temperature is 150 K and the critical pressure is $5 \times 10^{6} \mathrm{~Pa}$. The volume occupied by each gas molecule is \qquad Å.
(round off to two decimal places)
[Given: $\mathrm{R}=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}, \mathrm{~N}_{\mathrm{A}}=6.023 \times 10^{23}$]

